Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
IEEE Trans Haptics ; PP2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093675

RESUMEN

Tactile feedback is essential for upper-limb prostheses functionality and embodiment, yet its practical implementation presents challenges. Users must adapt to non-physiological signals, increasing cognitive load. However, some prosthetic devices transmit tactile information through socket vibrations, even to untrained individuals. Our experiments validated this observation, demonstrating a user's surprising ability to identify contacted fingers with a purely passive, cosmetic hand. Further experiments with advanced soft articulated hands revealed decreased performance in tactile information relayed by socket vibrations as hand complexity increased. To understand the underlying mechanisms, we conducted numerical and mechanical vibration tests on four prostheses of varying complexity. Additionally, a machine-learning classifier identified the contacted finger based on measured socket signals. Quantitative results confirmed that rigid hands facilitated contact discrimination, achieving 83% accuracy in distinguishing index finger contacts from others. While human discrimination decreased with advanced hands, machine learning surpassed human performance. These findings suggest that rigid prostheses provide natural vibration transmission, potentially reducing the need for tactile feedback devices, which advanced hands may require. Nonetheless, the possibility of machine learning algorithms outperforming human discrimination indicates potential to enhance socket vibrations through active sensing and actuation, bridging the gap in vibration-transmitted tactile discrimination between rigid and advanced hands.

2.
IEEE Trans Haptics ; PP2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078769

RESUMEN

This study presents the characterization and validation of the VIBES, a wearable vibrotactile device that provides high-frequency tactile information embedded in a prosthetic socket. A psychophysical characterization involving ten able-bodied participants is performed to compute the Just Noticeable Difference (JND) related to the discrimination of vibrotactile cues delivered on the skin in two forearm positions, with the goal of optimising vibrotactile actuator position to maximise perceptual response. Furthermore, system performance is validated and tested both with ten able-bodied participants and one prosthesis user considering three tasks. More specifically, in the Active Texture Identification, Slippage and Fragile Object Experiments, we investigate if the VIBES could enhance users' roughness discrimination and manual usability and dexterity. Finally, we test the effect of the vibrotactile system on prosthetic embodiment in a Rubber Hand Illusion (RHI) task. Results show the system's effectiveness in conveying contact and texture cues, making it a potential tool to restore sensory feedback and enhance the embodiment in prosthetic users.

3.
iScience ; 27(6): 109871, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38784005

RESUMEN

For dexterous control of the hand, humans integrate sensory information and prior knowledge regarding their bodies and the world. We studied the role of touch in hand motor control by challenging a fundamental prior assumption-that self-motion of inanimate objects is unlikely upon contact. In a reaching task, participants slid their fingertips across a robotic interface, with their hand hidden from sight. Unbeknownst to the participants, the robotic interface remained static, followed hand movement, or moved in opposition to it. We considered two hypotheses. Either participants were able to account for surface motion or, if the stationarity assumption held, they would integrate the biased tactile cues and proprioception. Motor errors consistent with the latter hypothesis were observed. The role of visual feedback, tactile sensitivity, and friction was also investigated. Our study carries profound implications for human-machine collaboration in a world where objects may no longer conform to the stationarity assumption.

4.
Cancer Immunol Res ; 12(7): 921-943, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38683145

RESUMEN

The prognosis of patients with acute myeloid leukemia (AML) is limited, especially for elderly or unfit patients not eligible for hematopoietic stem cell (HSC) transplantation. The disease is driven by leukemic stem cells (LSCs), which are characterized by clonal heterogeneity and resistance to conventional therapy. These cells are therefore believed to be a major cause of progression and relapse. We designed MP0533, a multispecific CD3-engaging designed ankyrin repeat protein (DARPin) that can simultaneously bind to three antigens on AML cells (CD33, CD123, and CD70), aiming to enable avidity-driven T cell-mediated killing of AML cells coexpressing at least two of the antigens. In vitro, MP0533 induced selective T cell-mediated killing of AML cell lines, as well as patient-derived AML blasts and LSCs, expressing two or more target antigens, while sparing healthy HSCs, blood, and endothelial cells. The higher selectivity also resulted in markedly lower levels of cytokine release in normal human blood compared to single antigen-targeting T-cell engagers. In xenograft AML mice models, MP0533 induced tumor-localized T-cell activation and cytokine release, leading to complete eradication of the tumors while having no systemic adverse effects. These studies show that the multispecific-targeting strategy used with MP0533 holds promise for improved selectivity toward LSCs and efficacy against clonal heterogeneity, potentially bringing a new therapeutic option to this group of patients with a high unmet need. MP0533 is currently being evaluated in a dose-escalation phase 1 study in patients with relapsed or refractory AML (NCT05673057).


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Neoplásicas , Linfocitos T , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patología , Animales , Ratones , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Subunidad alfa del Receptor de Interleucina-3/inmunología , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Complejo CD3/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica
5.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422184

RESUMEN

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Euterios , Evolución Molecular , Regulación de la Expresión Génica , Corteza Motora , Neuronas Motoras , Proteínas , Vocalización Animal , Animales , Quirópteros/genética , Quirópteros/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Cromatina/metabolismo , Neuronas Motoras/fisiología , Laringe/fisiología , Epigénesis Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Euterios/genética , Euterios/fisiología , Aprendizaje Automático
6.
J Autoimmun ; 143: 103166, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219652

RESUMEN

The complement system plays a central role in the pathogenesis of Systemic Lupus Erythematosus (SLE), but most studies have focused on the classical pathway. Ficolin-3 is the main initiator of the lectin pathway of complement in humans, but its role in systemic autoimmune disease has not been conclusively determined. Here, we combined biochemical and genetic approaches to assess the contribution of ficolin-3 to SLE risk and disease manifestations. Ficolin-3 activity was measured by a functional assay in serum or plasma samples from Swedish SLE patients (n = 786) and controls matched for age and sex (n = 566). Genetic variants in an extended 300 kb genomic region spanning the FCN3 locus were analyzed for their association with ficolin-3 activity and SLE manifestations in a Swedish multicenter cohort (n = 985). Patients with ficolin-3 activity in the highest tertile showed a strong enrichment in an SLE cluster defined by anti-Sm/DNA/nucleosome antibodies (OR 3.0, p < 0.001) and had increased rates of hematological disease (OR 1.4, p = 0.078) and lymphopenia (OR = 1.6, p = 0.039). Genetic variants associated with low ficolin-3 activity mapped to an extended haplotype in high linkage disequilibrium upstream of the FCN3 gene. Patients carrying the lead genetic variant associated with low ficolin-3 activity had a lower frequency of hematological disease (OR 0.67, p = 0.018) and lymphopenia (OR 0.63, p = 0.031) and fewer autoantibodies (p = 0.0019). Loss-of-function variants in the FCN3 gene were not associated with SLE, but four (0.5 %) SLE patients developed acquired ficolin-3 deficiency where ficolin-3 activity in serum was depleted following diagnosis of SLE. Taken together, our results provide genetic and biochemical evidence that implicate the lectin pathway in hematological SLE manifestations. We also identify lectin pathway activation through ficolin-3 as a factor that contributes to the autoantibody response in SLE.


Asunto(s)
Enfermedades Hematológicas , Lupus Eritematoso Sistémico , Linfopenia , Humanos , Anticuerpos Antinucleares , Autoanticuerpos , Proteínas del Sistema Complemento , Ficolinas , Lectinas/genética , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética
8.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941194

RESUMEN

The use of vibrotactile feedback is of growing interest in the field of prosthetics, but few devices fully integrate this technology in the prosthesis to transmit high-frequency contact information (such as surface roughness and first contact) arising from the interaction of the prosthetic device with external items. This study describes a wearable vibrotactile system for high-frequency tactile information embedded in the prosthetic socket. The device consists of two compact planar vibrotactile actuators in direct contact with the user's skin to transmit tactile cues. These stimuli are directly related to the acceleration profiles recorded with two IMUS placed on the distal phalanx of a soft under-actuated robotic prosthesis (Soft-Hand Pro). We characterized the system from a psychophysical point of view with fifteen able-bodied participants by computing participants' Just Noticeable Difference (JND) related to the discrimination of vibrotactile cues delivered on the index finger, which are associated with the exploration of different sandpapers. Moreover, we performed a pilot experiment with one SoftHand Pro prosthesis user by designing a task, i.e. Active Texture Identification, to investigate if our feedback could enhance users' roughness discrimination. Results indicate that the device can effectively convey contact and texture cues, which users can readily detect and distinguish.


Asunto(s)
Miembros Artificiales , Biónica , Humanos , Diseño de Prótesis , Retroalimentación Sensorial , Tacto
9.
IEEE Trans Haptics ; 16(4): 760-769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37801383

RESUMEN

Despite technological advancements, upper limb prostheses still face high abandonment/rejection rates due to limitations in control interfaces and the absence of force/tactile feedback. Improving these aspects is crucial for enhancing user acceptance and optimizing functional performance. This pilot study, therefore, aims to understand which sensory feedback in combination with a soft robotic prosthetic hand could provide advantages for amputees, including performing everyday tasks. Tactile cues provided are contact information, grasping force, degree of hand opening, and combinations of this information. To transfer such feedback, different wearable systems are used, based on either vibrotactile or force stimulation in a non-invasive modality matching approach. Five volunteers with a trans-radial amputation controlling the new prosthetic hand SoftHand Pro performed a study protocol including everyday tasks. The results indicate the preference of amputees for a single, i.e. non-combined, feedback modality. The choice of appropriate haptic feedback seems to be subject and task-specific. Furthermore, in alignment with the participants' feedback, force feedback, with adequate granularity and clarity, could potentially be the most valuable feedback among those presented. Finally, the study suggests that prosthetic solutions should be preferred where amputees are able to choose their feedback system.


Asunto(s)
Amputados , Miembros Artificiales , Percepción del Tacto , Humanos , Proyectos Piloto , Retroalimentación , Tecnología Háptica , Percepción del Tacto/fisiología , Extremidad Superior , Retroalimentación Sensorial/fisiología
10.
EBioMedicine ; 96: 104804, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37769433

RESUMEN

BACKGROUND: In patients with idiopathic inflammatory myopathies (IIM), autoantibodies are associated with specific clinical phenotypes suggesting a pathogenic role of adaptive immunity. We explored if autoantibody profiles are associated with specific HLA genetic variants and clinical manifestations in IIM. METHODS: We included 1348 IIM patients and determined the occurrence of 14 myositis-specific or -associated autoantibodies. We used unsupervised cluster analysis to identify autoantibody-defined subgroups and logistic regression to estimate associations with clinical manifestations, HLA-DRB1, HLA-DQA1, HLA-DQB1 alleles, and amino acids imputed from genetic information of HLA class II and I molecules. FINDINGS: We identified eight subgroups with the following dominant autoantibodies: anti-Ro52, -U1RNP, -PM/Scl, -Mi2, -Jo1, -Jo1/Ro52, -TIF1γ or negative for all analysed autoantibodies. Associations with HLA-DRB1∗11, HLA-DRB1∗15, HLA-DQA1∗03, and HLA-DQB1∗03 were present in the anti-U1RNP-dominated subgroup. HLA-DRB1∗03, HLA-DQA1∗05, and HLA-DQB1∗02 alleles were overrepresented in the anti-PM/Scl and anti-Jo1/Ro52-dominated subgroups. HLA-DRB1∗16, HLA-DRB1∗07 alleles were most frequent in anti-Mi2 and HLA-DRB1∗01 and HLA-DRB1∗07 alleles in the anti-TIF1γ subgroup. The HLA-DRB1∗13, HLA-DQA1∗01 and HLA-DQB1∗06 alleles were overrepresented in the negative subgroup. Significant signals from variations in class I molecules were detected in the subgroups dominated by anti-Mi2, anti-Jo1/Ro52, anti-TIF1γ, and the negative subgroup. INTERPRETATION: Distinct HLA class II and I associations were observed for almost all autoantibody-defined subgroups. The associations support autoantibody profiles use for classifying IIM which would likely reflect underlying pathogenic mechanisms better than classifications based on clinical symptoms and/or histopathological features. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Asunto(s)
Autoanticuerpos , Miositis , Humanos , Alelos , Autoanticuerpos/genética , Predisposición Genética a la Enfermedad , Haplotipos , Cadenas HLA-DRB1/genética , Miositis/genética , Miositis/inmunología , Fenotipo
11.
Genome Biol ; 24(1): 187, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582787

RESUMEN

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Asunto(s)
Lobos , Perros , Animales , Lobos/genética , Mapeo Cromosómico , Alelos , Polimorfismo de Nucleótido Simple , Nucleótidos , Demografía
12.
Eur J Endocrinol ; 189(2): 235-241, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553728

RESUMEN

OBJECTIVE: Autoantibodies against the adrenal enzyme 21-hydroxylase is a hallmark manifestation in autoimmune Addison's disease (AAD). Steroid 21-hydroxylase is encoded by CYP21A2, which is located in the human leucocyte antigen (HLA) region together with the highly similar pseudogene CYP21A1P. A high level of copy number variation is seen for the 2 genes, and therefore, we asked whether genetic variation of the CYP21 genes is associated with AAD. DESIGN: Case-control study on patients with AAD and healthy controls. METHODS: Using next-generation DNA sequencing, we estimated the copy number of CYP21A2 and CYP21A1P, together with HLA alleles, in 479 Swedish patients with AAD and autoantibodies against 21-hydroxylase and in 1393 healthy controls. RESULTS: With 95% of individuals carrying 2 functional 21-hydroxylase genes, no difference in CYP21A2 copy number was found when comparing patients and controls. In contrast, we discovered a lower copy number of the pseudogene CYP21A1P among AAD patients (P = 5 × 10-44), together with associations of additional nucleotide variants, in the CYP21 region. However, the strongest association was found for HLA-DQB1*02:01 (P = 9 × 10-63), which, in combination with the DRB1*04:04-DQB1*03:02 haplotype, imposed the greatest risk of AAD. CONCLUSIONS: We identified strong associations between copy number variants in the CYP21 region and risk of AAD, although these associations most likely are due to linkage disequilibrium with disease-associated HLA class II alleles.


Asunto(s)
Enfermedad de Addison , Humanos , Enfermedad de Addison/genética , Esteroide 21-Hidroxilasa/genética , Variaciones en el Número de Copia de ADN/genética , Estudios de Casos y Controles , Suecia/epidemiología , Autoanticuerpos
13.
Sci Robot ; 8(78): eadd5434, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37196072

RESUMEN

Human manual dexterity relies critically on touch. Robotic and prosthetic hands are much less dexterous and make little use of the many tactile sensors available. We propose a framework modeled on the hierarchical sensorimotor controllers of the nervous system to link sensing to action in human-in-the-loop, haptically enabled, artificial hands.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Percepción del Tacto , Humanos , Mano/fisiología , Tacto/fisiología
14.
IEEE Trans Haptics ; PP2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134036

RESUMEN

In vision, Augmented Reality (AR) allows the superposition of digital content on real-world visual information, relying on the well-established See-through paradigm. In the haptic domain, a putative Feel-through wearable device should allow to modify the tactile sensation without masking the actual cutaneous perception of the physical objects. To the best of our knowledge, a similar technology is still far to be effectively implemented. In this work, we present an approach that allows, for the first time, to modulate the perceived softness of real objects using a Feel-through wearable that uses a thin fabric as interaction surface. During the interaction with real objects, the device can modulate the growth of the contact area over the fingerpad without affecting the force experienced by the user, thus modulating the perceived softness. To this aim, the lifting mechanism of our system warps the fabric around the fingerpad in a way proportional to the force exerted on the specimen under exploration. At the same time, the stretching state of the fabric is controlled to keep a loose contact with the fingerpad. We demonstrated that different softness perceptions for the same specimens can be elicited, by suitably controlling the lifting mechanism of the system.

15.
PLoS One ; 18(5): e0285081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37141211

RESUMEN

Grasping an object is one of the most common and complex actions performed by humans. The human brain can adapt and update the grasp dynamics through information received from sensory feedback. Prosthetic hands can assist with the mechanical performance of grasping, however currently commercially available prostheses do not address the disruption of the sensory feedback loop. Providing feedback about a prosthetic hand's grasp force magnitude is a top priority for those with limb loss. This study tested a wearable haptic system, i.e., the Clenching Upper-Limb Force Feedback device (CUFF), which was integrated with a novel robotic hand (The SoftHand Pro). The SoftHand Pro was controlled with myoelectrics of the forearm muscles. Five participants with limb loss and nineteen able-bodied participants completed a constrained grasping task (with and without feedback) which required modulation of the grasp to reach a target force. This task was performed while depriving participants of incidental sensory sources (vision and hearing were significantly limited with glasses and headphones). The data were analyzed with Functional Principal Component Analysis (fPCA). CUFF feedback improved grasp precision for participants with limb loss who typically use body-powered prostheses as well as a sub-set of able-bodied participants. Further testing, that is more functional and allows participants to use all sensory sources, is needed to determine if CUFF feedback can accelerate mastery of myoelectric control or would benefit specific patient sub-groups.


Asunto(s)
Miembros Artificiales , Humanos , Retroalimentación , Diseño de Prótesis , Electromiografía , Mano/fisiología , Fuerza de la Mano/fisiología , Retroalimentación Sensorial/fisiología
16.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050776

RESUMEN

Wearable sensing solutions have emerged as a promising paradigm for monitoring human musculoskeletal state in an unobtrusive way. To increase the deployability of these systems, considerations related to cost reduction and enhanced form factor and wearability tend to discourage the number of sensors in use. In our previous work, we provided a theoretical solution to the problem of jointly reconstructing the entire muscular-kinematic state of the upper limb, when only a limited amount of optimally retrieved sensory data are available. However, the effective implementation of these methods in a physical, under-sensorized wearable has never been attempted before. In this work, we propose to bridge this gap by presenting an under-sensorized system based on inertial measurement units (IMUs) and surface electromyography (sEMG) electrodes for the reconstruction of the upper limb musculoskeletal state, focusing on the minimization of the sensors' number. We found that, relying on two IMUs only and eight sEMG sensors, we can conjointly reconstruct all 17 degrees of freedom (five joints, twelve muscles) of the upper limb musculoskeletal state, yielding a median normalized RMS error of 8.5% on the non-measured joints and 2.5% on the non-measured muscles.


Asunto(s)
Extremidad Superior , Dispositivos Electrónicos Vestibles , Humanos , Fenómenos Biomecánicos , Movimiento (Física)
17.
IEEE Trans Haptics ; 16(4): 518-523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37099460

RESUMEN

The perception of time is highly subjective and intertwined with space perception. In a well-known perceptual illusion, called Kappa effect, the distance between consecutive stimuli is modified to induce time distortions in the perceived inter-stimulus interval that are proportional to the distance between the stimuli. However, to the best of our knowledge, this effect has not been characterized and exploited in virtual reality (VR) within a multisensory elicitation framework. This paper investigates the Kappa effect elicited by concurrent visual-tactile stimuli delivered to the forearm, through a multimodal VR interface. This paper compares the outcomes of an experiment in VR with the results of the same experiment performed in the "physical world", where a multimodal interface was applied to participants' forearm to deliver controlled visual-tactile stimuli. Our results suggest that a multimodal Kappa effect can be elicited both in VR and in the physical world relying on concurrent visual-tactile stimulation. Moreover, our results confirm the existence of a relation between the ability of participants in discriminating the duration of time intervals and the magnitude of the experienced Kappa effect. These outcomes can be exploited to modulate the subjective perception of time in VR, paving the path toward more personalised human-computer interaction.


Asunto(s)
Ilusiones , Percepción del Tiempo , Percepción del Tacto , Realidad Virtual , Humanos , Percepción del Tacto/fisiología , Tacto , Ilusiones/fisiología
18.
Science ; 380(6643): eabn3943, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104599

RESUMEN

Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.


Asunto(s)
Euterios , Evolución Molecular , Animales , Femenino , Humanos , Secuencia Conservada/genética , Euterios/genética , Genoma Humano
19.
Science ; 380(6643): eabn2937, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104612

RESUMEN

Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.


Asunto(s)
Enfermedad , Variación Genética , Animales , Humanos , Evolución Biológica , Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Enfermedad/genética
20.
bioRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945512

RESUMEN

Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA