Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Oral Investig ; 26(6): 4315-4325, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35149905

RESUMEN

OBJECTIVES: To investigate the chemical changes in root dentin submitted to ionizing radiation and how it affects the interaction with resin cements. MATERIALS AND METHODS: Forty human premolars were randomly divided into two groups (n = 20): non-irradiated and irradiated. They were randomly subdivided according to the type of resin cement (n = 10): conventional (RelyX ARC, 3 M ESPE) or self-adhesive (RelyX U200, 3 M ESPE). After cementation of the fiberglass posts, the roots were sectioned to be analyzed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and confocal laser scanning microscopy (CLSM). The data obtained from FTIR and Raman were analyzed using two-way ANOVA followed Tukey's test (α = 0.05). For CLSM, a descriptive analysis was performed. RESULTS: In the FTIR, there was a significant difference between the non-irradiated and irradiated groups for phosphate (p = 0.011), carbonate (p < 0.001), amide III (p = 0.038), and carbonate/mineral ratio (p < 0.001). Regarding the root third, there was a difference for amide I (p = 0.002), mineral/matrix ratio (p = 0.001), and amide I/CH2 (p = 0.026) between the cervical and the others. Raman spectroscopy revealed no difference between groups for 961/1458 cm-1 in the diffusion zone. CLSM showed a different interaction pattern for the two cements with the irradiated dentin from the cervical third. CONCLUSIONS: Ionizing radiation altered the chemical composition of root dentin, especially in the cervical third. The resin cements showed less interaction with the irradiated root dentin. CLINICAL RELEVANCE: As radiotherapy alters the chemical composition of root dentin, the interaction of resin cement with dentin can compromise the success of rehabilitation with fiberglass posts.


Asunto(s)
Recubrimiento Dental Adhesivo , Dentina/efectos de la radiación , Cementos de Resina/química , Amidas , Cementación/métodos , Dentina/química , Humanos , Ensayo de Materiales , Técnica de Perno Muñón
2.
Animal Model Exp Med ; 2(3): 169-177, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31773092

RESUMEN

BACKGROUND: The purpose of the study was to analyze the effect of cell therapy on the repair process in calvaria defects in rats subjected to irradiation. METHODS: Bone marrow mesenchymal cells were characterized for osteoblastic phenotype. Calvariae of male Wistar rats were irradiated (20 Gy) and, after 4 weeks, osteoblastic cells were placed in surgically created defects in irradiated (IRC) and control animals (CC), paired with untreated irradiated (IR) and control (C) animals. After 30 days, histological and microtomographic evaluation was performed to establish significant (P < 0.05) differences among the groups. RESULTS: Higher alkaline phosphatase detection and activity, along with an increase in mineralized nodules, in the IRC, C and CC groups compared to the IR group, confirmed an osteoblastic phenotype. Histology showed impaired bone neoformation following irradiation, affecting bone marrow composition. Cell therapy in the IRC group improved bone neoformation compared to the IR group. Microtomography revealed increased bone volume, bone surface and trabecular number in IRC group compared to the IR group. CONCLUSION: Cell therapy may improve bone neoformation in defects created after irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...