Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37445003

RESUMEN

Typically, coniferous sawdust from debarked stems is used to make pellets. Given the high lignin content, which ensures strong binding and high calorific values, this feedstock provides the best quality available. However, finding alternative feedstocks for pellet production is crucial if small-scale pellet production is to be developed and used to support the economy and energy independence of rural communities. These communities have to be able to create pellets devoid of additives and without biomass pre-processing so that the feedstock price remains low. The features of pellets made from other sources of forest biomass, such as different types of waste, broadleaf species, and pruning biomass, have attracted some attention in this context. This review sought to provide an overview of the most recent (2019-2023) knowledge on the subject and to bring into consideration potential feedstocks for the growth of small-scale pellet production. Findings from the literature show that poor bulk density and mechanical durability are the most frequent issues when making pellets from different feedstocks. All of the tested alternative biomass typologies have these shortcomings, which are also a result of the use of low-performance pelletizers in small-scale production, preventing the achievement of adequate mechanical qualities. Pellets made from pruning biomass, coniferous residues, and wood from short-rotation coppice plants all have significant flaws in terms of ash content and, in some cases, nitrogen, sulfur, and chlorine content as well. All things considered, research suggests that broadleaf wood from beech and oak trees, collected through routine forest management activities, makes the best feasible feedstock for small-scale pellet production. Despite having poor mechanical qualities, these feedstocks can provide pellets with a low ash level. High ash content is a significant disadvantage when considering pellet manufacture and use on a small scale since it can significantly raise maintenance costs, compromising the supply chain's ability to operate cost-effectively. Pellets with low bulk density and low mechanical durability can be successfully used in a small-scale supply chain with the advantages of reducing travel distance from the production site and storage time.

2.
Environ Monit Assess ; 194(5): 375, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437645

RESUMEN

Vulnerability to land degradation in Mediterranean Europe increased substantially in the last decades because of the latent interplay of climate and land-use change, progressive soil deterioration, and rising human pressure. The present study provides a quantitative evaluation of the intrinsic change over time in the level of vulnerability to land degradation over a representative Mediterranean area (Italy) using a normative indicator, the percentage of land classified as 'critical' in total area. This indicator derives from a spatially explicit elaboration of the ESA (Environmental Sensitive Area) Index (ESAI), a standard methodology of land classification considering different levels of vulnerability to degradation at a particularly refined spatial scale (1 km2). This indicator was calculated over a relatively long time interval (1960-2010) and aggregated at the geographical scale of administrative regions in Italy, a relevant domain in the implementation of the National Action Plan (NAP) to combat desertification and the adoption of individual Regional Action Plans (RAP). A significant - but spatially heterogeneous - increase in 'critical' land was observed in Italy, leading to distinctive dynamics in northern/central regions and southern regions. Climate aridity and anthropogenic pressure leveraged the sudden vulnerability in some marginal land of Northern Italy - a region classified as unexposed to desertification risk - paralleling the levels observed in some districts of Southern Italy, an 'affected' region to desertification risk. These results suggest a re-thinking of mitigation policies proposed in the Italian NAP and a redesign of the RAPs toward place-specific adaptation measures, especially in the 'less exposed' Northern Italian region.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Clima , Monitoreo del Ambiente/métodos , Humanos , Políticas , Suelo
3.
Artículo en Inglés | MEDLINE | ID: mdl-35270402

RESUMEN

The United Nations Convention to Combat Desertification (UNCCD) assumes spatial disparities in land resources as a key driver of soil degradation and early desertification processes all over the world. Although regional divides in soil quality have been frequently observed in Mediterranean-type ecosystems, the impact of landscape configuration on the spatial distribution of sensitive soils was poorly investigated in Southern Europe, an affected region sensu UNCCD. Our study proposes a spatially explicit analysis of 16 ecological metrics (namely, patch size and shape, fragmentation, interspersion, and juxtaposition) applied to three classes of a landscape with different levels of exposure to land degradation ('non-affected', 'fragile', and 'critical'). Land classification was based on the Environmentally Sensitive Area Index (ESAI) calculated for Italy at 3 time points along a 50-year period (1960, 1990, 2010). Ecological metrics were calculated at both landscape and class scale and summarized for each Italian province-a relevant policy scale for the Italian National Action Plan (NAP) to combat desertification. With the mean level of soil sensitivity rising over time almost everywhere in Italy, 'non-affected' land became more fragmented, the number of 'fragile' and 'critical' patches increased significantly, and the average patch size of both classes followed the same trend. Such dynamics resulted in intrinsically disordered landscapes, with (i) larger (and widely connected) 'critical' land patches, (ii) spatially diffused and convoluted 'fragile' land patches, and (iii) a more interspersed and heterogeneous matrix of 'non affected' land. Based on these results, we discussed the effects of increasing numbers and sizes of 'critical' patches in terms of land degradation. A sudden expansion of 'critical' land may determine negative environmental consequences since (i) the increasing number of these patches may trigger desertification risk and (ii) the buffering effect of neighboring, non-affected land is supposed to be less efficient, and this contains a downward spiral toward land degradation less effectively. Policy strategies proposed in the NAPs of affected countries are required to account more explicitly on the intrinsic, spatio-temporal evolution of 'critical' land patches in affected regions.


Asunto(s)
Ecosistema , Suelo , Conservación de los Recursos Naturales/métodos , Ecología , Monitoreo del Ambiente/métodos , Italia
4.
Sci Rep ; 12(1): 747, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031625

RESUMEN

Southern Europe is a hotspot for desertification risk because of the intimate impact of soil deterioration, landscape transformations, rising human pressure, and climate change. In this context, large-scale empirical analyses linking landscape fragmentation with desertification risk assume that increasing levels of land vulnerability to degradation are associated with significant changes in landscape structure. Using a traditional approach of landscape ecology, this study evaluates the spatial structure of a simulated landscape based on different levels of vulnerability to land degradation using 15 metrics calculated at three time points (early-1960s, early-1990s, early-2010s) in Italy. While the (average) level of land vulnerability increased over time almost in all Italian regions, vulnerable landscapes demonstrated to be increasingly fragmented, as far as the number of homogeneous patches and mean patch size are concerned. The spatial balance in affected and unaffected areas-typically observed in the 1960s-was progressively replaced with an intrinsically disordered landscape, and this process was more intense in regions exposed to higher (and increasing) levels of land degradation. The spread of larger land patches exposed to intrinsic degradation brings to important consequences since (1) the rising number of hotspots may increase the probability of local-scale degradation processes, and (2) the buffering effect of neighbouring (unaffected) land can be less effective on bigger hotspots, promoting a downward spiral toward desertification.

5.
Sensors (Basel) ; 21(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672222

RESUMEN

This paper aims to investigate failures induced by vibrations on machines, focusing on agricultural ones. The research on literature has brought to light a considerable amount of data on the driven vehicles and not much on the operating machines, including the ones that we looked for. For this reason, it was decided to direct a survey with the people who work with agricultural machinery every day: operators, sub-contractors, and producers. They were asked about the most frequent breakage, particularly in relation to the rotary harrow, the topic of this work. The questionnaire results showed the types of failures the harrow is most vulnerable to, indicating the times of failure and reparation and the need to set up a potentially useful preventive maintenance supporting system on these machines. Part of the work was then focused on the proposition of a method to investigate bearing failures in the rotary harrow, considering that these have been analyzed in the technical literature and in the survey as the most at-risk components. The proposed method in this work serves as a beginning for the development of a future on board sent-shore-based maintenance system for continuous monitoring of the bearing.

6.
J Sci Food Agric ; 99(13): 6060-6065, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31226223

RESUMEN

BACKGROUND: Chestnuts are gluten-free, low-fat, cholesterol-free products. Postharvest decay reduces chestnut shelf life and can cause severe economic losses. In this study we investigated the effect of ozone (O3 ) gaseous treatment on chestnut rot caused by Gnomoniopsis castanea and the quality parameters of chestnuts. RESULTS: The results showed that ozone treatment (150 ppb during the day, and 300 ppb during the night) reduced the decay of chestnuts and had a fungistatic effect on isolates of G. castanea. The exposure of chestnuts to ozone did not alter weight losses, sugar content and titratable acidity. The concentration of total phenolics decreased during the storage period, both for treated and untreated nuts. However, after 150 days of treatment the polyphenol content of the chestnuts exposed to ozone was significantly higher than in control nuts. CONCLUSIONS: Our results suggested that ozone is an appropriate and economical tool to maximize the quality of chestnut shelf life, enabling it to be stored for long periods. © 2019 Society of Chemical Industry.


Asunto(s)
Fagaceae/química , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Nueces/química , Ozono/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Carbohidratos/química , Fagaceae/microbiología , Conservación de Alimentos/instrumentación , Conservantes de Alimentos/química , Almacenamiento de Alimentos , Nueces/microbiología , Ozono/química , Fenoles/química , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...