Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063302

RESUMEN

The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration, and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43, and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms, and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation, and migration and leads to loss of barrier integrity. During recovery, our in silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.


Asunto(s)
Mucosa Intestinal , Intestinos , Ratones , Animales , Proliferación Celular/fisiología , Mucosa Intestinal/metabolismo , Diferenciación Celular/fisiología , Homeostasis/fisiología
2.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997696

RESUMEN

Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Receptores Toll-Like , Humanos , Células CACO-2 , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Transducción de Señal
3.
Cell Chem Biol ; 23(7): 805-815, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27447048

RESUMEN

Cell-specific proteomics in multicellular systems and whole animals is a promising approach to understand the differentiated functions of cells and tissues. Here, we extend our stochastic orthogonal recoding of translation (SORT) approach for the co-translational tagging of proteomes with a cyclopropene-containing amino acid in response to diverse codons in genetically targeted cells, and create a tetrazine-biotin probe containing a cleavable linker that offers a way to enrich and identify tagged proteins. We demonstrate that SORT with enrichment, SORT-E, efficiently recovers and enriches SORT tagged proteins and enables specific identification of enriched proteins via mass spectrometry, including low-abundance proteins. We show that tagging at distinct codons enriches overlapping, but distinct sets of proteins, suggesting that tagging at more than one codon enhances proteome coverage. Using SORT-E, we accomplish cell-specific proteomics in the fly. These results suggest that SORT-E will enable the definition of cell-specific proteomes in animals during development, disease progression, and learning and memory.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Sondas Moleculares/química , Proteómica , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Compuestos Azo/química , Biotina/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Femenino , Código Genético , Espectrometría de Masas , Sondas Moleculares/síntesis química , Estructura Molecular , Transporte de Proteínas , Tetrazoles/química
4.
Curr Opin Chem Biol ; 21: 154-60, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25159020

RESUMEN

The site specific, co-translational introduction of unnatural amino acids into proteins produced in cells has been facilitated by the development of the pyrrolysyl-tRNA synthetase/tRNACUA pair. This pair can now be used to direct the site-specific incorporation of designer amino acids in E. coli, yeast, mammalian cells, and animals (the worm, C. elegans and the fly, D. melanogaster). Developments in encoding components of rapid bioorthogonal reactions are providing new opportunities for labelling and visualising proteins. A new method called stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) leverages advances in genetic code expansion and bioorthogonal chemistry to label proteomes with diverse chemistry at diverse codons in E. coli, mammalian cells, and in spatially and temporally defined sets of cells in the fly. Proteomes in targeted sets of cells have been visualised by SORT-M and proteins in targeted cells have been identified by SORT-M.


Asunto(s)
Células/metabolismo , Codón/genética , Ingeniería de Proteínas/métodos , Proteómica/métodos , Coloración y Etiquetado/métodos , Aminoacil-ARNt Sintetasas/metabolismo , Animales
5.
Nat Biotechnol ; 32(5): 465-72, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24727715

RESUMEN

Identifying the proteins synthesized at specific times in cells of interest in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals.


Asunto(s)
Proteínas/análisis , Proteoma/análisis , Proteómica/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Biotecnología , Biología Computacional , Drosophila melanogaster , Electroforesis en Gel Bidimensional , Escherichia coli , Femenino , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Sondas Moleculares , Especificidad de Órganos , Ovario/química , Ovario/crecimiento & desarrollo , Proteínas/química , Proteínas/metabolismo , Proteínas/fisiología , Proteoma/química , Proteoma/metabolismo , Proteoma/fisiología
6.
Nat Chem Biol ; 8(9): 748-50, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22864544

RESUMEN

Genetic code expansion for unnatural amino acid mutagenesis has, until recently, been limited to cell culture. We demonstrate the site-specific incorporation of unnatural amino acids into proteins in Drosophila melanogaster at different developmental stages, in specific tissues and in a subset of cells within a tissue. This approach provides a foundation for probing and controlling processes in this established metazoan model organism with a new level of molecular precision.


Asunto(s)
Drosophila melanogaster/genética , Código Genético , Animales , Femenino
7.
Curr Biol ; 20(16): 1487-92, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20691595

RESUMEN

The expression of the RNA-binding factor Fragile X mental retardation protein (FMRP) is disrupted in the most common inherited form of cognitive deficiency in humans. FMRP controls neuronal morphogenesis by mediating the translational regulation and localization of a large number of mRNA targets, and these functions are closely associated with transport of FMRP complexes within neurites by microtubule-based motors. However, the mechanisms that link FMRP to motors and regulate its transport are poorly understood. Here we show that FMRP is complexed with Bicaudal-D (BicD) through a domain in the latter protein that mediates linkage of cargoes with the minus-end-directed motor dynein. We demonstrate in Drosophila that the motility and, surprisingly, levels of FMRP protein are dramatically reduced in BicD mutant neurons, leading to a paucity of FMRP within processes. We also provide functional evidence that BicD and FMRP cooperate to control dendritic morphogenesis in the larval nervous system. Our findings open new perspectives for understanding localized mRNA functions in neurons.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Neuronas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Dendritas/metabolismo , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Larva/metabolismo , Neurogénesis , Transporte de Proteínas
8.
Nature ; 448(7151): 362-5, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17637670

RESUMEN

Although directed migration is a feature of both individual cells and cell groups, guided migration has been studied most extensively for single cells in simple environments. Collective guidance of cell groups remains poorly understood, despite its relevance for development and metastasis. Neural crest cells and neuronal precursors migrate as loosely organized streams of individual cells, whereas cells of the fish lateral line, Drosophila tracheal tubes and border-cell clusters migrate as more coherent groups. Here we use Drosophila border cells to examine how collective guidance is performed. We report that border cells migrate in two phases using distinct mechanisms. Genetic analysis combined with live imaging shows that polarized cell behaviour is critical for the initial phase of migration, whereas dynamic collective behaviour dominates later. PDGF- and VEGF-related receptor and epidermal growth factor receptor act in both phases, but use different effector pathways in each. The myoblast city (Mbc, also known as DOCK180) and engulfment and cell motility (ELMO, also known as Ced-12) pathway is required for the early phase, in which guidance depends on subcellular localization of signalling within a leading cell. During the later phase, mitogen-activated protein kinase and phospholipase Cgamma are used redundantly, and we find that the cluster makes use of the difference in signal levels between cells to guide migration. Thus, information processing at the multicellular level is used to guide collective behaviour of a cell group.


Asunto(s)
Movimiento Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas del Citoesqueleto , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Esenciales/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Fosfolipasa C gamma/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras de la Señalización Shc , Proteínas de Unión al GTP rac/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...