Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 104(5): 6283-6294, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33888221

RESUMEN

Production of artisan cheeses, including surface-ripened cheeses, has increased in the United States over the past 2 decades. Although many of these cheesemakers report unique quality and spoilage problems during production, a systematic assessment of the quality concerns facing this sector of specialty cheese production has not been conducted. Here we report the effects of microbial spoilage and quality issues on US artisan cheese production. In a survey of 61 cheesemakers, the most common issues reported were undesirable surface molds (71%) and incorrect or unexpected colors or pigments on rinds (54%). When asked, 18% of participants indicated that they were extremely concerned about quality and spoilage problems, and they indicated that their quality standards are frequently not met, either annually (39%) or monthly (33%). Although most of the respondents (62%) said that just 0 to 5% of their cheese was lost or rendered less valuable due to quality issues annually, a small number (7% combined) reported large losses of 20 to 30% or >30% of their product lost or rendered less valuable. Almost all respondents (95%) agreed that improved quality would reduce waste, increase profits, and improve production. The survey respondents indicated in open response questions that they want access to more online resources related to quality issues and digital forums to discuss issues with experts and peers when problems arise. These findings represent the first attempt to document and estimate the effect of quality and spoilage on the American artisan cheese industry. Future work should investigate what technologies, interventions, or information could reduce losses from these problems.


Asunto(s)
Queso , Animales , Queso/análisis , Color , Microbiología de Alimentos , Hongos , Encuestas y Cuestionarios , Estados Unidos
2.
mBio ; 10(5)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615965

RESUMEN

Fermented foods provide novel ecological opportunities for natural populations of microbes to evolve through successive recolonization of resource-rich substrates. Comparative genomic data have reconstructed the evolutionary histories of microbes adapted to food environments, but experimental studies directly demonstrating the process of domestication are lacking for most fermented food microbes. Here, we show that during adaptation to cheese, phenotypic and metabolomic traits of wild Penicillium molds rapidly change to produce domesticated phenotypes with properties similar to those of the industrial cultures used to make Camembert and other bloomy rind cheeses. Over a period of just a few weeks, populations of wild Penicillium strains serially passaged on cheese had reduced pigment, spore, and mycotoxin production. Domesticated strains also had a striking change in volatile metabolite production, shifting from production of earthy or musty volatile compounds (e.g., geosmin) to fatty and cheesy volatiles (e.g., 2-nonanone, 2-undecanone). RNA sequencing demonstrated a significant decrease in expression of 356 genes in domesticated strains, with an enrichment of many secondary metabolite production pathways in these downregulated genes. By manipulating the presence of neighboring microbial species and overall resource availability, we demonstrate that the limited competition and high nutrient availability of the cheese environment promote rapid trait evolution of Penicillium molds.IMPORTANCE Industrial cultures of filamentous fungi are used to add unique aesthetics and flavors to cheeses and other microbial foods. How these microbes adapted to live in food environments is generally unknown as most microbial domestication is unintentional. Our work demonstrates that wild molds closely related to the starter culture Penicillium camemberti can readily lose traits and quickly shift toward producing desirable aroma compounds. In addition to experimentally demonstrating a putative domestication pathway for P. camemberti, our work suggests that wild Penicillium isolates could be rapidly domesticated to produce new flavors and aesthetics in fermented foods.


Asunto(s)
Queso/microbiología , Penicillium/metabolismo , Transcriptoma/genética , Compuestos Orgánicos Volátiles/metabolismo
3.
Compr Rev Food Sci Food Saf ; 18(1): 286-304, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33337025

RESUMEN

Fungal spoilage in processed foods remains a challenge for food manufacturers despite the increasing availability of diverse processing and formulation strategies used to control foodborne microorganisms. Physiological features of yeasts and molds contribute to their tolerance to thermal processing, acidity, desiccation, and oxygen and nutrient limitations. These features variably include growth form, cell wall structure, cytoplasmic composition, cell membrane-bound proteins, and secretion of secondary metabolites. Collectively, these mechanisms contribute to the ability of fungi to disperse, survive, and propagate in highly restrictive food environments. The diversity of fungal growth and survival mechanisms has resulted in organisms adapted to nearly all food environments; although, only a small subset of fungi are particularly suited for spoilage of a given product. The relationship between the individual physiology and metabolic capabilities of a yeast or mold and the product's specific physicochemical attributes and processing history determines spoilage potential. Explicit characterization of the fungal features responsible for this extremotolerance contributes to more targeted and effective control strategies.

4.
Plant Dis ; 103(1): 125-131, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30444468

RESUMEN

Paecilomyces rot of apples is a postharvest disease caused by the thermotolerant fungus Paecilomyces niveus (Byssochlamys nivea). The etiology of disease and the activity of fungicides against P. niveus are not yet well understood. This study evaluated the ability of P. niveus to infect 'Gala' apples growing in a conventionally managed orchard. In addition, the sensitivity of P. niveus isolates to postharvest fungicides difenoconazole, fludioxonil, and pyrimethanil was characterized for isolates from both agricultural and nonagricultural environments. Apples were wounded and mock-inoculated or inoculated with P. niveus in early July. At the time of harvest, 8 weeks after wounding, the inoculated apples had significantly larger lesions than mock-inoculated apples (P < 0.005). The average diameter of lesions on wound-inoculated apples was 11.17 mm ± 6.82 SD, while the average diameter of mock-inoculated lesions was 3.34 mm ± 1.85 SD. Disease symptoms in the orchard were similar to postharvest symptoms of Paecilomyces rot. Symptoms included a brown, flattened, circular lesion with faint concentric rings. The necrosis of mesocarp was firm and roughly U-shaped. Baseline isolates of P. niveus, from nonagricultural environments, were used to determine the effective fungicide dose at which growth was inhibited by 50% (EC50). Furthermore, fungicide sensitivity of P. niveus isolates was examined using relative growth assays at the mean baseline EC50 values to compare baseline isolates with isolates obtained from commercial apple orchards where they were likely exposed to fungicides. Among the exposed isolates, reduced sensitivity to all fungicides was observed, but significant differences between baseline and exposed isolates were only observed with fludioxonil (P < 0.0001). This is the first report demonstrating that P. niveus can infect apples that are wound-inoculated in the orchard and that isolates from agricultural environments are less sensitive to common fungicides, especially fludioxonil. This finding may have implications for the control of this postharvest diseases. Whether natural infections of apples by P. niveus is initiated in the orchard or during postharvest has yet to be determined.


Asunto(s)
Byssochlamys , Fungicidas Industriales , Malus , Paecilomyces , Virulencia
5.
Genome Announc ; 6(25)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930063

RESUMEN

Paecilomyces niveus is an extremotolerant fungus with surprising powers to survive high temperatures and infect apples and aphids. These abilities make it a formidable enemy in food and agricultural environments. In addition, it produces patulin, the most significant mycotoxin in apples.

6.
Food Microbiol ; 69: 89-95, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941913

RESUMEN

Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 aw). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic.


Asunto(s)
Contaminación de Alimentos/análisis , Hongos/aislamiento & purificación , Agua de Mar/microbiología , Cloruro de Sodio/análisis , Hongos/clasificación , Hongos/genética , Filogenia , Agua de Mar/química
7.
Plant Dis ; 102(8): 1581-1587, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30673420

RESUMEN

Paecilomyces niveus is an important food spoilage fungus that survives thermal processing in fruit products, where it produces the mycotoxin patulin. Spoilage of products has been attributed to soil contamination; however, little is known about the ecology of this organism. In this study, orchard soils and culled apple fruit were surveyed and the ability of P. niveus to infect apple was tested on two popular apple varieties. P. niveus was found in 34% of sampled orchard soils from across New York. Completing Koch's postulates, P. niveus was demonstrated to cause postharvest disease in Gala and Golden Delicious apple. Symptoms of this disease, named Paecilomyces rot, resemble several other apple diseases, including black rot, bitter rot, and bull's-eye rot. External symptoms of Paecilomyces rot include brown, circular, concentrically ringed lesions, with an internal rot that is firm and cone-shaped. Both Gala and Golden Delicious apple fruit inoculated with P. niveus developed lesions ≥43 mm in size at 22 days after inoculation. There is some evidence that the size of lesions and rate of infection differ between Gala and Golden Delicious, which may indicate differing resistance to P. niveus. This work shows that P. niveus is common in New York orchard soil and can cause a novel postharvest fruit disease. Whether infected fruit can serve as an overlooked source of inoculum in heat-processed apple products requires further study.


Asunto(s)
Malus/microbiología , Paecilomyces/fisiología , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Malus/clasificación , New York , Paecilomyces/clasificación , Paecilomyces/genética , Filogenia , Especificidad de la Especie , Tubulina (Proteína)/clasificación , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...