Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 56, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388518

RESUMEN

Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.


Asunto(s)
Gliosis , Enfermedades de la Retina , Ratones , Animales , Humanos , Gliosis/metabolismo , Factor H de Complemento/genética , Ratones Endogámicos C57BL , Retina/metabolismo
2.
Front Immunol ; 13: 895519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784369

RESUMEN

The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.


Asunto(s)
Células Endoteliales , Degeneración Macular , Coroides , Proteínas del Sistema Complemento , Humanos , Degeneración Macular/genética , Retina
3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502128

RESUMEN

Age-related macular degeneration (AMD), one of the leading causes of blindness worldwide, causes personal suffering and high socioeconomic costs. While there has been progress in the treatments for the neovascular form of AMD, no therapy is yet available for the more common dry form, also known as geographic atrophy. We analysed the retinal tissue in a mouse model of retinal degeneration caused by sodium iodate (NaIO3)-induced retinal pigment epithelium (RPE) atrophy to understand the underlying pathology. RNA sequencing (RNA-seq), qRT-PCR, Western blot, immunohistochemistry of the retinas and multiplex ELISA of the mouse serum were applied to find the pathways involved in the degeneration. NaIO3 caused patchy RPE loss and thinning of the photoreceptor layer. This was accompanied by the increased retinal expression of complement components c1s, c3, c4, cfb and cfh. C1s, C3, CFH and CFB were complement proteins, with enhanced deposition at day 3. C4 was upregulated in retinal degeneration at day 10. Consistently, the transcript levels of proinflammatory ccl-2, -3, -5, il-1ß, il-33 and tgf-ß were increased in the retinas of NaIO3 mice, but vegf-a mRNA was reduced. Macrophages, microglia and gliotic Müller cells could be a cellular source for local retinal inflammatory changes in the NaIO3 retina. Systemic complement and cytokines/chemokines remained unaltered in this model of NaIO3-dependent retinal degeneration. In conclusion, systemically administered NaIO3 promotes degenerative and inflammatory processes in the retina, which can mimic the hallmarks of geographic atrophy.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Susceptibilidad a Enfermedades , Yodatos/efectos adversos , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Animales , Apoptosis/genética , Apoptosis/inmunología , Proteínas del Sistema Complemento/genética , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata , Inmunohistoquímica , Ratones , Degeneración Retiniana/patología
4.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503976

RESUMEN

Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy-a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.


Asunto(s)
Células Ependimogliales/metabolismo , Homeostasis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Animales , Biomarcadores , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Inactivación de Genes , Gliosis/etiología , Gliosis/metabolismo , Gliosis/patología , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Especificidad de Órganos/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Retina/metabolismo , Retina/patología
5.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187113

RESUMEN

Stargardt macular degeneration is an inherited retinal disease caused by mutations in the ATP-binding cassette subfamily A member 4 (ABCA4) gene. Here, we characterized the complement expression profile in ABCA4-/- retinae and aligned these findings with morphological markers of retinal degeneration. We found an enhanced retinal pigment epithelium (RPE) autofluorescence, cell loss in the inner retina of ABCA4-/- mice and demonstrated age-related differences in complement expression in various retinal cell types irrespective of the genotype. However, 24-week-old ABCA4-/- mice expressed more c3 in the RPE and fewer cfi transcripts in the microglia compared to controls. At the protein level, the decrease of complement inhibitors (complement factor I, CFI) in retinae, as well as an increased C3b/C3 ratio in the RPE/choroid and retinae of ABCA4-/-, mice was confirmed. We showed a corresponding increase of the C3d/C3 ratio in the serum of ABCA4-/- mice, while no changes were observed for CFI. Our findings suggest an overactive complement cascade in the ABCA4-/- retinae that possibly contributes to pathological alterations, including microglial activation and neurodegeneration. Overall, this underpins the importance of well-balanced complement homeostasis to maintain retinal integrity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas del Sistema Complemento/metabolismo , Enfermedad de Stargardt/metabolismo , Animales , Coroides/metabolismo , Activación de Complemento/fisiología , Modelos Animales de Enfermedad , Femenino , Degeneración Macular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Microglía/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
6.
Cell Rep ; 29(9): 2835-2848.e4, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31775049

RESUMEN

Complement dysregulation is a feature of many retinal diseases, yet mechanistic understanding at the cellular level is limited. Given this knowledge gap about which retinal cells express complement, we performed single-cell RNA sequencing on ∼92,000 mouse retinal cells and validated our results in five major purified retinal cell types. We found evidence for a distributed cell-type-specific complement expression across 11 cell types. Notably, Müller cells are the major contributor of complement activators c1s, c3, c4, and cfb. Retinal pigment epithelium (RPE) mainly expresses cfh and the terminal complement components, whereas cfi and cfp transcripts are most abundant in neurons. Aging enhances c1s, cfb, cfp, and cfi expression, while cfh expression decreases. Transient retinal ischemia increases complement expression in microglia, Müller cells, and RPE. In summary, we report a unique complement expression signature for murine retinal cell types suggesting a well-orchestrated regulation of local complement expression in the retinal microenvironment.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Retina/fisiopatología , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...