Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Mol Biol ; 434(5): 167459, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065991

RESUMEN

Many integral membrane proteins are produced by translocon-associated ribosomes. The assembly of ribosomes translating membrane proteins on the translocons is mediated by a conserved system, composed of the signal recognition particle and its receptor (FtsY in Escherichia coli). FtsY is a peripheral membrane protein, and its role late during membrane protein targeting involves interactions with the translocon. However, earlier stages in the pathway have remained obscure, namely, how FtsY targets the membrane in vivo and where it initially docks. Our previous studies have demonstrated co-translational membrane-targeting of FtsY translation intermediates and identified a nascent FtsY targeting-peptide. Here, in a set of in vivo experiments, we utilized tightly stalled FtsY translation intermediates, pull-down assays and site-directed cross-linking, which revealed FtsY-nascent chain-associated proteins in the cytosol and on the membrane. Our results demonstrate interactions between the FtsY-translating ribosomes and cytosolic chaperones, which are followed by directly docking on the translocon. In support of this conclusion, we show that translocon over-expression increases dramatically the amount of membrane associated FtsY-translating ribosomes. The co-translational contacts of the FtsY nascent chains with the translocon differ from its post-translational contacts, suggesting a major structural maturation process. The identified interactions led us to propose a model for how FtsY may target the membrane co-translationally. On top of our past observations, the current results may add another tier to the hypothesis that FtsY acts stoichiometrically in targeting ribosomes to the membrane in a constitutive manner.


Asunto(s)
Proteínas Bacterianas , Membrana Celular , Proteínas de Escherichia coli , Chaperonas Moleculares , Receptores Citoplasmáticos y Nucleares , Ribosomas , Partícula de Reconocimiento de Señal , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/biosíntesis , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética
2.
Biophys J ; 120(10): 1984-1993, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33771471

RESUMEN

MdfA from Escherichia coli is a prototypical secondary multi-drug (Mdr) transporter that exchanges drugs for protons. MdfA-mediated drug efflux is driven by the proton gradient and enabled by conformational changes that accompany the recruitment of drugs and their release. In this work, we applied distance measurements by W-band double electron-electron resonance (DEER) spectroscopy to explore the binding of mito-TEMPO, a nitroxide-labeled substrate analog, to Gd(III)-labeled MdfA. The choice of Gd(III)-nitroxide DEER enabled measurements in the presence of excess of mito-TEMPO, which has a relatively low affinity to MdfA. Distance measurements between mito-TEMPO and MdfA labeled at the periplasmic edges of either of three selected transmembrane helices (TM3101, TM5168, and TM9310) revealed rather similar distance distributions in detergent micelles (n-dodecyl-ß-d-maltopyranoside, DDM)) and in lipid nanodiscs (ND). By grafting the predicted positions of the Gd(III) tag on the inward-facing (If) crystal structure, we looked for binding positions that reproduced the maxima of the distance distributions. The results show that the location of the mito-TEMPO nitroxide in DDM-solubilized or ND-reconstituted MdfA is similar (only 0.4 nm apart). In both cases, we located the nitroxide moiety near the ligand binding pocket in the If structure. However, according to the DEER-derived position, the substrate clashes with TM11, suggesting that for mito-TEMPO-bound MdfA, TM11 should move relative to the If structure. Additional DEER studies with MdfA labeled with Gd(III) at two sites revealed that TM9 also dislocates upon substrate binding. Together with our previous reports, this study demonstrates the utility of Gd(III)-Gd(III) and Gd(III)-nitroxide DEER measurements for studying the conformational behavior of transporters.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Detergentes , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de Escherichia coli/metabolismo , Lípidos
3.
J Mol Biol ; 432(20): 5665-5680, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32860775

RESUMEN

The prototypic multidrug (Mdr) transporter MdfA from Escherichia coli efflux chemically- dissimilar substrates in exchange for protons. Similar to other transporters, MdfA purportedly functions by alternating access of a central substrate binding pocket to either side of the membrane. Accordingly, MdfA should open at the cytoplasmic side and/or laterally toward the membrane to enable access of drugs into its pocket. At the end of the cycle, the periplasmic side is expected to open to release drugs. Two distinct conformations of MdfA have been captured by X-ray crystallography: An outward open (Oo) conformation, stabilized by a Fab fragment, and a ligand-bound inward-facing (If) conformation, possibly stabilized by a mutation (Q131R). Here, we investigated how these structures relate to ligand-dependent conformational dynamics of MdfA in lipid bilayers. For this purpose, we combined distances measured by double electron-electron resonance (DEER) between pairs of spin labels in MdfA, reconstituted in nanodiscs, with cysteine cross-linking of natively expressed membrane-embedded MdfA variants. Our results suggest that in a membrane environment, MdfA assumes a relatively flexible, outward-closed/inward-closed (Oc/Ic) conformation. Unexpectedly, our data show that neither the substrate TPP nor protonation induces large-scale conformational changes. Rather, we identified a substrate-responsive lateral gate, which is open toward the inner leaflet of the membrane but closes upon drug binding. Together, our results suggest a modified model for the functional conformational cycle of MdfA that does not invoke canonical elements of alternating access.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Transporte Biológico , Cristalografía por Rayos X , Citoplasma , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligandos , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Protones , Especificidad por Sustrato
4.
Sci Rep ; 9(1): 12528, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467343

RESUMEN

Methodological and technological advances in EPR spectroscopy have enabled novel insight into the structural and dynamic aspects of integral membrane proteins. In addition to an extensive toolkit of EPR methods, multiple spin labels have been developed and utilized, among them Gd(III)-chelates which offer high sensitivity at high magnetic fields. Here, we applied a dual labeling approach, employing nitroxide and Gd(III) spin labels, in conjunction with Q-band and W-band double electron-electron resonance (DEER) measurements to characterize the solution structure of the detergent-solubilized multidrug transporter MdfA from E. coli. Our results identify highly flexible regions of MdfA, which may play an important role in its functional dynamics. Comparison of distance distribution of spin label pairs on the periplasm with those calculated using inward- and outward-facing crystal structures of MdfA, show that in detergent micelles, the protein adopts a predominantly outward-facing conformation, although more closed than the crystal structure. The cytoplasmic pairs suggest a small preference to the outward-facing crystal structure, with a somewhat more open conformation than the crystal structure. Parallel DEER measurements with the two types of labels led to similar distance distributions, demonstrating the feasibility of using W-band spectroscopy with a Gd(III) label for investigation of the structural dynamics of membrane proteins.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Gadolinio/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Óxidos de Nitrógeno/química , Conformación Proteica
5.
J Mol Biol ; 430(11): 1607-1620, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29704493

RESUMEN

Much of our knowledge on the function of proteins is deduced from their mature, folded states. However, it is unknown whether partially synthesized nascent protein segments can execute biological functions during translation and whether their premature folding states matter. A recent observation that a nascent chain performs a distinct function, co-translational targeting in vivo, has been made with the Escherichia coli signal recognition particle receptor FtsY, a major player in the conserved pathway of membrane protein biogenesis. FtsY functions as a membrane-associated entity, but very little is known about the mode of its targeting to the membrane. Here we investigated the underlying structural mechanism of the co-translational FtsY targeting to the membrane. Our results show that helices N2-4, which mediate membrane targeting, form a stable folding intermediate co-translationally that greatly differs from its fold in the mature FtsY. These results thus resolve a long-standing mystery of how the receptor targets the membrane even when deleted of its alleged membrane targeting sequence. The structurally distinct targeting determinant of FtsY exists only co-translationally. Our studies will facilitate further efforts to seek cellular factors required for proper targeting and association of FtsY with the membrane. Moreover, the results offer a hallmark example for how co-translational nascent intermediates may dictate biological functions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Ribosomas/metabolismo
6.
J Mol Biol ; 430(9): 1368-1385, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29530612

RESUMEN

Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación , Sitios de Unión , Cristalografía por Rayos X , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato
7.
Res Microbiol ; 169(7-8): 455-460, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28951231

RESUMEN

MdfA is an interesting member of a large group of secondary multidrug (Mdr) transporters. Through genetic, biochemical and biophysical studies of MdfA, many challenging aspects of the multidrug transport phenomenon have been addressed. This includes its ability to interact with chemically unrelated drugs and how it utilizes energy to drive efflux of compounds that are not only structurally, but also electrically, different. Admittedly, however, despite all efforts and a recent pioneering structural contribution, several important mechanistic issues of the promiscuous capabilities of MdfA still seek better molecular and dynamic understanding.


Asunto(s)
Antibacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Antibacterianos/farmacología , Transporte Biológico , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética
8.
PLoS One ; 12(8): e0183862, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28841711

RESUMEN

Translation-independent mRNA localization represents an emerging concept in cell biology. In Escherichia coli, mRNAs encoding integral membrane proteins (MPRs) are targeted to the membrane where they are translated by membrane associated ribosomes and the produced proteins are inserted into the membrane co-translationally. In order to better understand aspects of the biogenesis and localization of MPRs, we investigated their subcellular distribution using cell fractionation, RNA-seq and qPCR. The results show that MPRs are overrepresented in the membrane fraction, as expected, and depletion of the signal recognition particle-receptor, FtsY reduced the amounts of all mRNAs on the membrane. Surprisingly, however, MPRs were also found relatively abundant in the soluble ribosome-free fraction and their amount in this fraction is increased upon overexpression of CspE, which was recently shown to interact with MPRs. CspE also conferred a positive effect on the membrane-expression of integral membrane proteins. We discuss the possibility that the effects of CspE overexpression may link the intriguing subcellular localization of MPRs to the cytosolic ribosome-free fraction with their translation into membrane proteins and that the ribosome-free pool of MPRs may represent a stage during their targeting to the membrane, which precedes translation.


Asunto(s)
Citoplasma/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , ARN Mensajero/metabolismo , Ribosomas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
9.
Elife ; 52016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26824389

RESUMEN

Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membrana Celular/química , Análisis Mutacional de ADN , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Unión Proteica , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
10.
PLoS One ; 10(7): e0134413, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225847

RESUMEN

Are integral membrane protein-encoding mRNAs (MPRs) different from other mRNAs such as those encoding cytosolic mRNAs (CPRs)? This is implied from the emerging concept that MPRs are specifically recognized and delivered to membrane-bound ribosomes in a translation-independent manner. MPRs might be recognized through uracil-rich segments that encode hydrophobic transmembrane helices. To investigate this hypothesis, we designed DNA sequences encoding model untranslatable transcripts that mimic MPRs or CPRs. By utilizing in vitro-synthesized biotinylated RNAs mixed with Escherichia coli extracts, we identified a highly specific interaction that takes place between transcripts that mimic MPRs and the cold shock proteins CspE and CspC, which are normally expressed under physiological conditions. Co-purification studies with E. coli expressing 6His-tagged CspE or CspC confirmed that the specific interaction occurs in vivo not only with the model uracil-rich untranslatable transcripts but also with endogenous MPRs. Our results suggest that the evolutionarily conserved cold shock proteins may have a role, possibly as promiscuous chaperons, in the biogenesis of MPRs.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Uracilo/metabolismo , Membrana Celular/metabolismo , Unión Proteica , ARN Mensajero/metabolismo
11.
J Cell Sci ; 128(7): 1444-52, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25653387

RESUMEN

The signal recognition particle (SRP) receptor is a major player in the pathway of membrane protein biogenesis in all organisms. The receptor functions as a membrane-bound entity but very little is known about its targeting to the membrane. Here, we demonstrate in vivo that the Escherichia coli SRP receptor targets the membrane co-translationally. This requires emergence from the ribosome of the four-helix-long N-domain of the receptor, of which only helices 2-4 are required for co-translational membrane attachment. The results also suggest that the targeting might be regulated co-translationally. Taken together, our in vivo studies shed light on the biogenesis of the SRP receptor and its hypothetical role in targeting ribosomes to the E. coli membrane.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/química , Receptores de Péptidos/genética , Ribosomas/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
12.
Nat Commun ; 5: 4615, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25105370

RESUMEN

Secondary multidrug transporters use ion concentration gradients to energize the removal from cells of various antibiotics. The Escherichia coli multidrug transporter MdfA exchanges a single proton with a single monovalent cationic drug molecule. This stoichiometry renders the efflux of divalent cationic drugs energetically unfavourable, as it requires exchange with at least two protons. Here we show that surprisingly, MdfA catalyses efflux of divalent cations, provided that they have a unique architecture: the two charged moieties must be separated by a long linker. These drugs are exchanged for two protons despite the apparent inability of MdfA to exchange two protons for a single drug molecule. Our results suggest that these drugs are transported in two consecutive transport cycles, where each cationic moiety is transported as if it were a separate substrate. We propose that secondary transport can adopt a processive-like mode of action, thus expanding the substrate spectrum of multidrug transporters.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Catálisis , Cationes , Reactivos de Enlaces Cruzados/química , Decualinio/química , Relación Dosis-Respuesta a Droga , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Mutación , Plásmidos/metabolismo , Protones
13.
Elife ; 32014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25135940

RESUMEN

In all living organisms, ribosomes translating membrane proteins are targeted to membrane translocons early in translation, by the ubiquitous signal recognition particle (SRP) system. In eukaryotes, the SRP Alu domain arrests translation elongation of membrane proteins until targeting is complete. Curiously, however, the Alu domain is lacking in most eubacteria. In this study, by analyzing genome-wide data on translation rates, we identified a potential compensatory mechanism in E. coli that serves to slow down the translation during membrane protein targeting. The underlying mechanism is likely programmed into the coding sequence, where Shine-Dalgarno-like elements trigger elongation pauses at strategic positions during the early stages of translation. We provide experimental evidence that slow translation during targeting and improves membrane protein production fidelity, as it correlates with better folding of overexpressed membrane proteins. Thus, slow elongation is important for membrane protein targeting in E. coli, which utilizes mechanisms different from the eukaryotic one to control the translation speed.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/química , Biosíntesis de Proteínas , Bacillus subtilis/metabolismo , Membrana Celular/microbiología , Codón , Mutagénesis , Estructura Terciaria de Proteína , Transporte de Proteínas , Ribosomas/química , Partícula de Reconocimiento de Señal/química
14.
Microb Cell ; 1(10): 349-351, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-28357213

RESUMEN

Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

15.
Mol Biol Cell ; 24(19): 3069-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23904265

RESUMEN

mRNAs encoding secreted/membrane proteins (mSMPs) are believed to reach the endoplasmic reticulum (ER) in a translation-dependent manner to confer protein translocation. Evidence exists, however, for translation- and signal recognition particle (SRP)-independent mRNA localization to the ER, suggesting that there are alternate paths for RNA delivery. We localized endogenously expressed mSMPs in yeast using an aptamer-based RNA-tagging procedure and fluorescence microscopy. Unlike mRNAs encoding polarity and secretion factors that colocalize with cortical ER at the bud tip, mSMPs and mRNAs encoding soluble, nonsecreted, nonpolarized proteins localized mainly to ER peripheral to the nucleus (nER). Synthetic nontranslatable uracil-rich mRNAs were also demonstrated to colocalize with nER in yeast. This mRNA-ER association was verified by subcellular fractionation and reverse transcription-PCR, single-molecule fluorescence in situ hybridization, and was not inhibited upon SRP inactivation. To better understand mSMP targeting, we examined aptamer-tagged USE1, which encodes a tail-anchored membrane protein, and SUC2, which encodes a soluble secreted enzyme. USE1 and SUC2 mRNA targeting was not abolished by the inhibition of translation or removal of elements involved in translational control. Overall we show that mSMP targeting to the ER is both translation- and SRP-independent, and regulated by cis elements contained within the message and trans-acting RNA-binding proteins (e.g., She2, Puf2).


Asunto(s)
Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/ultraestructura , Microscopía Fluorescente , Transporte de Proteínas , Proteínas Qc-SNARE/metabolismo , ARN Mensajero/ultraestructura , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , beta-Fructofuranosidasa/metabolismo
16.
Mol Cell ; 47(5): 777-87, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22841484

RESUMEN

Multidrug transporters are ubiquitous efflux pumps that provide cells with defense against various toxic compounds. In bacteria, which typically harbor numerous multidrug transporter genes, the majority function as secondary multidrug/proton antiporters. Proton-coupled secondary transport is a fundamental process that is not fully understood, largely owing to the obscure nature of proton-transporter interactions. Here we analyzed the substrate/proton coupling mechanism in MdfA, a model multidrug/proton antiporter. By measuring the effect of protons on substrate binding and by directly measuring proton binding and release, we show that substrates and protons compete for binding to MdfA. Our studies strongly suggest that competition is an integral feature of secondary multidrug transport. We identified the proton-binding acidic residue and show that, surprisingly, the substrate binds at a different site. Together, the results suggest an interesting mode of indirect competition as a mechanism of multidrug/proton antiport.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Diciclohexilcarbodiimida/farmacología , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Compuestos Onio/antagonistas & inhibidores , Compuestos Onio/química , Compuestos Onio/farmacología , Compuestos Organofosforados/antagonistas & inhibidores , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Pironina/farmacología
17.
Proc Natl Acad Sci U S A ; 109(31): 12473-8, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802625

RESUMEN

Multidrug transporters are integral membrane proteins that use cellular energy to actively extrude antibiotics and other toxic compounds from cells. The multidrug/proton antiporter MdfA from Escherichia coli exchanges monovalent cationic substrates for protons with a stoichiometry of 1, meaning that it translocates only one proton per antiport cycle. This may explain why transport of divalent cationic drugs by MdfA is energetically unfavorable. Remarkably, however, we show that MdfA can be easily converted into a divalent cationic drug/≥ 2 proton-antiporter, either by random mutagenesis or by rational design. The results suggest that exchange of divalent cationi c drugs with two (or more) protons requires an additional acidic residue in the multidrug recognition pocket of MdfA. This outcome further illustrates the exceptional promiscuous capabilities of multidrug transporters.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Protones , Farmacorresistencia Microbiana/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transporte Iónico/fisiología , Proteínas de Transporte de Membrana/genética , Mutagénesis
18.
Trends Biochem Sci ; 37(1): 1-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22088262

RESUMEN

Integral membrane proteins (IMPs) are usually synthesized by membrane-bound ribosomes, and this process requires proper localization of ribosomes and IMP-encoding transcripts. However, the underlying molecular mechanism of the pathway has not yet been fully established in vivo. The prevailing hypothesis is that ribosomes and transcripts are delivered to the membrane together during IMP translation by the signal recognition particle (SRP) and its receptor. Here, I discuss an alternative hypothesis that posits that ribosomes and transcripts are targeted separately. Ribosome targeting to the membrane might be mediated by the SRP receptor, rather than by SRP, and IMP-encoding transcripts might be targeted to the membrane in a translation-independent manner. According to this scenario, the SRP executes its essential function on the membrane at a later stage of the targeting pathway.


Asunto(s)
Escherichia coli/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Proteínas de la Membrana/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo
19.
Biochim Biophys Acta ; 1808(3): 841-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20682283

RESUMEN

All living cells have co-translational pathways for targeting membrane proteins. Co-translation pathways for secretory proteins also exist but mostly in eukaryotes. Unlike secretory proteins, the biosynthetic pathway of most membrane proteins is conserved through evolution and these proteins are usually synthesized by membrane-bound ribosomes. Translation on the membrane requires that both the ribosomes and the mRNAs be properly localized. Theoretically, this can be achieved by several means. (i) The current view is that the targeting of cytosolic mRNA-ribosome-nascent chain complexes (RNCs) to the membrane is initiated by information in the emerging hydrophobic nascent polypeptides. (ii) The alternative model suggests that ribosomes may be targeted to the membrane also constitutively, whereas the appropriate mRNAs may be carried on small ribosomal subunits or targeted by other cellular factors to the membrane-bound ribosomes. Importantly, the available experimental data do not rule out the possibility that cells may also utilize both pathways in parallel. In any case, it is well documented that a major player in the targeting pathway is the signal recognition particle (SRP) system composed of the SRP and its receptor (SR). Although the functional core of the SRP system is evolutionarily conserved, its composition and biological practice come with different flavors in various organisms. This review is dedicated mainly to the Escherichia (E.) coli SRP, where the biochemical and structural properties of components of the SRP system have been relatively characterized, yielding essential information about various aspects of the pathway. In addition, several cellular interactions of the SRP and its receptor have been described in E. coli, providing insights into their spatial function. Collectively, these in vitro studies have led to the current view of the targeting pathway [see (i) above]. Interestingly, however, in vivo studies of the role of the SRP and its receptor, with emphasis on the temporal progress of the pathway, elicited an alternative hypothesis [see (ii) above]. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Biogénesis de Organelos , Transporte de Proteínas , Ribosomas/metabolismo
20.
J Biol Chem ; 285(52): 40508-14, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20956528

RESUMEN

The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cardiolipinas/biosíntesis , Escherichia coli K12/metabolismo , Fosfatidilgliceroles/biosíntesis , Receptores Citoplasmáticos y Nucleares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/biosíntesis , Proteínas Bacterianas/genética , Cardiolipinas/genética , Escherichia coli K12/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Mutación , Fosfatidilgliceroles/genética , Estructura Secundaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Partícula de Reconocimiento de Señal/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...