Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(14): 17789-17801, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33398767

RESUMEN

Bisphenol A (BPA), an endocrine disruptor, is widely used in the manufacture of different daily life products. Accumulating evidence supports the association between the increasing incidence of neurodegenerative diseases and the BPA level in the environment. In the present study, we aimed to evaluate the neuroprotective role of melatonin against BPA-induced mitochondrial dysfunction-mediated apoptosis in the brain. Herein, adult Sprague Dawley rats were administrated (subcutaneously) with BPA (100 µg/kg BW, 1 mg/kg BW, and 10 mg/kg BW) and melatonin (4 mg/kg BW) for 16 days. Our results showed BPA exposure significantly increased the oxidative stress as demonstrated by increased free radicals (ROS), TBARs level, disrupted cellular architecture, and decreased antioxidant enzymes including SOD, CAT, APX, POD, and GSH levels. Additionally, BPA treatment increased the expression of PUMA, p53, and Drp-1 resulting in apoptosis in the brain tissue of rats. However, melatonin treatment significantly attenuated BPA-induced toxic effects by scavenging ROS, boosting antioxidant enzyme activities, and interestingly enervated brain apoptosis by normalizing p53, PUMA, and Drp-1 expressions at both transcriptional and translational level. Moreover, the brain tissue histology also revealed the therapeutic potential of melatonin by normalizing the cellular architecture. Conclusively, our finding suggests that melatonin could alleviate oxidative stress and mitochondrial dysfunction-linked apoptosis, rendering its neuroprotective potential against BPA-induced toxicity.


Asunto(s)
Melatonina , Animales , Antioxidantes , Proteínas Reguladoras de la Apoptosis , Compuestos de Bencidrilo/toxicidad , Melatonina/farmacología , Estrés Oxidativo , Fenoles , Ratas , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA