Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38687614

RESUMEN

The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.


Asunto(s)
Acinetobacter calcoaceticus , Glucosa 1-Deshidrogenasa , Peróxido de Hidrógeno , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Peróxido de Hidrógeno/metabolismo , Glucosa 1-Deshidrogenasa/genética , Glucosa 1-Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Glucosa/metabolismo , Especificidad por Sustrato , Cofactor PQQ/metabolismo , Cristalografía por Rayos X
2.
Nat Commun ; 14(1): 6390, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828004

RESUMEN

Artificial actuators have been extensively studied due to their wide range of applications from soft robotics to biomedicine. Herein we introduce an autonomous bi-enzymatic system where reversible motion is triggered by the spontaneous oxidation and reduction of glucose and oxygen, respectively. This chemo-mechanical actuation is completely autonomous and does not require any external trigger to induce self-sustained motion. The device takes advantage of the asymmetric uptake and release of ions on the anisotropic surface of a conducting polymer strip, occurring during the operation of the enzymes glucose oxidase and bilirubin oxidase immobilized on its surface. Both enzymes are connected via a redox polymer at each extremity of the strip, but at the opposite faces of the polymer film. The time-asymmetric consumption of both fuels by the enzymatic reactions produces a double break of symmetry of the film, leading to autonomous actuation. An additional break of symmetry, introduced by the irreversible overoxidation of one extremity of the polymer film, leads to a crawling-type motion of the free-standing polymer film. These reactions occur in a virtually unlimited continuous loop, causing long-term autonomous actuation of the device.

3.
Bioelectrochemistry ; 149: 108314, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36335789

RESUMEN

A new redox polymer/bilirubin oxidase (BOD)-based gas diffusion electrode was designed to be implemented as the non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell that acts as a self-powered glucose biosensor. For the proof-of-concept, a bioanode comprising the Os-complex modified redox polymer P(VI-co-AA)-[Os(bpy)2Cl]Cl and FAD-dependent glucose dehydrogenase to oxidize the analyte was used. In order to develop an optimal O2-reducing biocathode for the biofuel cell Mv-BOD as well as Bp-BOD and Mo-BOD have been tested in gas diffusion electrodes in direct electron transfer as well as in mediated electron transfer immobilized in the Os-complex modified redox polymer P(VI-co-AA)-[Os(diCl-bpy)2]Cl2. The resulting biofuel cell exhibits a glucose-dependent current and power output in the concentration region between 1 and 10 mM. To create a more realistic test environment, the performance and long-term stability of the biofuel cell-based self-powered glucose biosensor has been investigated in a flow-through cell design.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Bilirrubina , Electrodos , Enzimas Inmovilizadas/metabolismo , Glucosa , Glucosa 1-Deshidrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Polímeros , Gases
4.
Nat Chem ; 13(12): 1241-1247, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34650234

RESUMEN

A key approach for designing bioinspired machines is to transfer concepts from nature to man-made structures by integrating biomolecules into artificial mechanical systems. This strategy allows the conversion of molecular information into macroscopic action. Here, we describe the design and dynamic behaviour of hybrid bioelectrochemical swimmers that move spontaneously at the air-water interface. Their motion is governed by the diastereomeric interactions between immobilized enantiopure oligomers and the enantiomers of a chiral probe molecule present in solution. These dynamic bipolar systems are able to convert chiral information present at the molecular level into enantiospecific macroscopic trajectories. Depending on the enantiomer in solution, the swimmers will move clockwise or anticlockwise; the concept can also be used for the direct visualization of the degree of enantiomeric excess by analysing the curvature of the trajectories. Deciphering in such a straightforward way the enantiomeric ratio could be useful for biomedical applications, for the read-out of food quality or as a more general analogue of polarimetric measurements.


Asunto(s)
Dihidroxifenilalanina/análisis , Tecnología/instrumentación , Animales , Bovinos , Dihidroxifenilalanina/química , Enzimas Inmovilizadas/química , Diseño de Equipo , Movimiento (Física) , Oligopéptidos/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Polímeros/química , Pirroles/química , Estereoisomerismo , Tiofenos/química
5.
Anal Chem ; 90(6): 4174-4181, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29464952

RESUMEN

One way for phytoplankton to survive orthophosphate depletion is to utilize dissolved organic phosphorus by expressing alkaline phosphatase. The actual methods to assay alkaline phosphate activity-either in bulk or as a presence/absence of enzyme activity-fail to provide information on individual living cells. In this context, we develop a new microfluidic method to compartmentalize cells in 0.5 nL water-in-oil droplets and measure alkaline phosphatase activity at the single-cell level. We use enzyme-labeled fluorescence (ELF), which is based on the hydrolysis of ELF-P substrate, to monitor in real time and at the single-cell level both qualitative and quantitative information on cell physiology (i.e., localization and number of active enzyme sites and alkaline phosphatase kinetics). We assay the alkaline phosphatase activity of Tetraselmis sp. as a function of the dissolved inorganic phosphorus concentration and show that the time scale of the kinetics spans 1 order of magnitude. The advantages of subnanoliter-scale compartmentalization in droplet-based microfluidics provide a precise characterization of a population with single-cell resolution. Our results highlight the key role of cell physiology to efficiently access dissolved organic phosphorus.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Chlorophyta/enzimología , Pruebas de Enzimas/instrumentación , Dispositivos Laboratorio en un Chip , Fitoplancton/enzimología , Chlorophyta/metabolismo , Hidrólisis , Fósforo/metabolismo , Fitoplancton/metabolismo , Análisis de la Célula Individual/instrumentación
6.
ACS Appl Mater Interfaces ; 9(1): 1093-1098, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27997114

RESUMEN

Controlling the interface between biological tissues and electrodes remains an important challenge for the development of implantable devices in terms of electroactivity, biocompatibility, and long-term stability. To engineer such a biocompatible interface a low molecular weight gel (LMWG) based on a glycosylated nucleoside fluorocarbon amphiphile (GNF) was employed for the first time to wrap gold electrodes via a noncovalent anchoring strategy, that is, self-assembly of GNF at the electrode surface. Scanning electron microscopy (SEM) studies indicate that the gold surface is coated with the GNF hydrogels. Electrochemical measurements using cyclic voltammetry (CV) clearly show that the electrode properties are not affected by the presence of the hydrogel. This coating layer of 1 to 2 µm does not significantly slow down the mass transport through the hydrogel. Voltammetry experiments with gel coated macroporous enzyme electrodes reveal that during continuous use their current is improved by 100% compared to the noncoated electrode. This demonstrates that the supramolecular hydrogel dramatically increases the stability of the bioelectrochemical interface. Therefore, such hybrid electrodes are promising candidates that will both offer the biocompatibility and stability needed for the development of more efficient biosensors and biofuel cells.

7.
Sci Rep ; 4: 7517, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25515588

RESUMEN

On March 11(th), 2011 the Mw 9.0 2011 Tohoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Desastres , Terremotos , Geografía , Japón , Tsunamis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...