Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183603

RESUMEN

BACKGROUND AND AIMS: SPATULA (SPT) encodes a basic Helix-Loop-Helix transcription factor in Arabidopsis thaliana that functions in the development of the style, stigma and replum tissues, all of which arise from the carpel margin meristem (CMM) of the gynoecium. Here, we use a comparative approach to investigate the evolutionary history of SPT and identify changes that potentially contributed to its role in gynoecium development. METHODS: We investigate SPT's molecular and functional evolution using phylogenetic reconstruction, yeast-2-hybrid analyses of protein-protein interactions, microarray-based analyses of protein-DNA interactions, plant transformation assays, RNA in-situ hybridization, and in-silico analyses of promoter sequences. KEY RESULTS: We demonstrate the SPT lineage to have arisen at the base of euphyllophytes from a clade of potentially light-regulated transcription factors through gene duplication followed by the loss of an Active Phytochrome Binding (APB) domain. We also clarify the more recent evolutionary history of SPT and its paralog ALCATRAZ (ALC), which appear to have arisen through a large-scale duplication within Brassicales. We find that SPT orthologs from diverse groups of seed plants share strikingly similar capacities for protein-protein and protein-DNA interactions, and that SPT coding regions from a wide taxonomic range of plants are able to complement loss-of-function spt mutations in transgenic Arabidopsis. However, the expression pattern of SPT appears to have evolved significantly within angiosperms, and we identify structural changes in SPT's promoter region that correlate with the acquisition of high expression levels in tissues arising from the CMM in Brassicaeae. CONCLUSIONS: We conclude that changes to SPT's expression pattern made a major contribution to the evolution of its developmental role in the gynoecium of Brassicaeae. By contrast, the main biochemical capacities of SPT, as well as many of its immediate transcriptional targets, appear to have been conserved at least since the base of living angiosperms.

2.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950937

RESUMEN

The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.


Asunto(s)
Plasticidad de la Célula , Proliferación Celular , Poliquetos , Regeneración , Animales , Regeneración/fisiología , Poliquetos/fisiología , Poliquetos/citología , Plasticidad de la Célula/fisiología , Células Madre/citología , Diferenciación Celular/fisiología , Anélidos/fisiología
3.
BMC Genomics ; 24(1): 583, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784028

RESUMEN

BACKGROUND: Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal. Among annelids, the nereididae Platynereis dumerilii (re)emerged recently as a front-line regeneration model. Following amputation of its posterior part, Platynereis worms can regenerate both differentiated tissues of their terminal part as well as a growth zone that contains putative stem cells. While this regeneration process follows specific and reproducible stages that have been well characterized, the transcriptomic landscape of these stages remains to be uncovered. RESULTS: We generated a high-quality de novo Reference transcriptome for the annelid Platynereis dumerilii. We produced and analyzed three RNA-sequencing datasets, encompassing five stages of posterior regeneration, along with blastema stages and non-amputated tissues as controls. We included two of these regeneration RNA-seq datasets, as well as embryonic and tissue-specific datasets from the literature to produce a Reference transcriptome. We used this Reference transcriptome to perform in depth analyzes of RNA-seq data during the course of regeneration to reveal the important dynamics of the gene expression, process with thousands of genes differentially expressed between stages, as well as unique and specific gene expression at each regeneration stage. The study of these genes highlighted the importance of the nervous system at both early and late stages of regeneration, as well as the enrichment of RNA-binding proteins (RBPs) during almost the entire regeneration process. CONCLUSIONS: In this study, we provided a high-quality de novo Reference transcriptome for the annelid Platynereis that is useful for investigating various developmental processes, including regeneration. Our extensive stage-specific transcriptional analysis during the course of posterior regeneration sheds light upon major molecular mechanisms and pathways, and will foster many specific studies in the future.


Asunto(s)
Anélidos , Poliquetos , Animales , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Anélidos/genética , Poliquetos/genética , Perfilación de la Expresión Génica
4.
J Exp Zool B Mol Dev Evol ; 340(4): 298-315, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37160758

RESUMEN

Regeneration is the process by which many animals are able to restore lost or injured body parts. After amputation of the posterior part of its body, the annelid Platynereis dumerilii is able to regenerate the pygidium, the posteriormost part of its body that bears the anus, and a subterminal growth zone containing stem cells that allows the subsequent addition of new segments. The ability to regenerate their posterior part (posterior regeneration) is promoted, in juvenile worms, by a hormone produced by the brain and is lost when this hormonal activity becomes low at the time the worms undergo their sexual maturation. By characterizing posterior regeneration at the morphological and molecular levels in worms that have been decapitated, we show that the presence of the head is essential for multiple aspects of posterior regeneration, as well as for the subsequent production of new segments. We also show that methylfarnesoate, the molecule proposed to be the brain hormone, can partially rescue the posterior regeneration defects observed in decapitated worms. Our results are therefore consistent with a key role of brain hormonal activity in the control of regeneration and growth in P. dumerilii, and support the hypothesis of the involvement of methylfarnesoate in this control.


Asunto(s)
Anélidos , Animales , Amputación Quirúrgica , Encéfalo , Células Madre
5.
Cell Mol Life Sci ; 78(8): 3941-3956, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33515282

RESUMEN

Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.


Asunto(s)
Regeneración , Transcriptoma , Animales , Evolución Biológica , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Morfogénesis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA