Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(35): 19283-19292, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37585603

RESUMEN

Precise tailoring of the aggregation state of covalent organic frameworks (COFs) to form a hierarchical porous structure is critical to their performance and applications. Here, we report a one-pot and one-step strategy of using dynamic combinatorial chemistry to construct imine-based hollow COFs containing meso- and macropores. It relies on a direct copolymerization of three or more monomers in the presence of two monofunctional competitors. The resulting particle products possess high crystallinity and hierarchical pores, including micropores around 0.93 nm, mesopores widely distributed in the range of 3.1-32 nm, and macropores at about 500 nm, while the specific surface area could be up to 748 m2·g-1, with non-micropores accounting for 60% of the specific surface area. The particles demonstrate unique advantages in the application as nanocarriers for in situ loading of Pd catalysts at 93.8% loading efficiency in the copolymerization of ethylene and carbon monoxide. The growth and assembly of the copolymer could thus be regulated to form flower-shaped particles, efficiently suppressing the fouling of the reactor. The copolymer's weight-average molecular weight and the melting temperature are also highly improved. Our method provides a facile way of fabricating COFs with hierarchical pores for advanced applications in catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...