Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39270324

RESUMEN

Patients with head and neck squamous cell carcinomas (HNSCC) often have poor outcomes due to suboptimal risk-management and treatment strategies; yet integrating novel prognostic biomarkers into clinical practice is challenging. Here, we report the presence of multinucleated giant cells (MGC) - a type of macrophages - in tumors from patients with HNSCC, which are associated with a favorable prognosis in treatment-naive and preoperative-chemotherapy-treated patients. Importantly, MGC density increased in tumors following preoperative therapy, suggesting a role of these cells in the anti-tumoral response. To enable clinical translation of MGC density as a prognostic marker, we developed a deep-learning model to automate its quantification on routinely stained pathological whole slide images. Finally, we used spatial transcriptomic and proteomic approaches to describe the MGC-related tumor microenvironment and observed an increase in central memory CD4 T cells. We defined an MGC-specific signature resembling to TREM2-expressing mononuclear tumor associated macrophages, which co-localized in keratin tumor niches.

2.
Sci Immunol ; 9(97): eadk3981, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058763

RESUMEN

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Monocitos , Neoplasias Pancreáticas , Macrófagos Asociados a Tumores , Animales , Monocitos/inmunología , Humanos , Ratones , Macrófagos Asociados a Tumores/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Diferenciación Celular/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
J Extracell Vesicles ; 13(3): e12420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490958

RESUMEN

High-grade serous carcinoma of the ovary, fallopian tube and peritoneum (HGSC), the most common type of ovarian cancer, ranks among the deadliest malignancies. Many HGSC patients have excess fluid in the peritoneum called ascites. Ascites is a tumour microenvironment (TME) containing various cells, proteins and extracellular vesicles (EVs). We isolated EVs from patients' ascites by orthogonal methods and analyzed them by mass spectrometry. We identified not only a set of 'core ascitic EV-associated proteins' but also defined their subset unique to HGSC ascites. Using single-cell RNA sequencing data, we mapped the origin of HGSC-specific EVs to different types of cells present in ascites. Surprisingly, EVs did not come predominantly from tumour cells but from non-malignant cell types such as macrophages and fibroblasts. Flow cytometry of ascitic cells in combination with analysis of EV protein composition in matched samples showed that analysis of cell type-specific EV markers in HGSC has more substantial prognostic potential than analysis of ascitic cells. To conclude, we provide evidence that proteomic analysis of EVs can define the cellular composition of HGSC TME. This finding opens numerous avenues both for a better understanding of EV's role in tumour promotion/prevention and for improved HGSC diagnostics.


Asunto(s)
Cistadenocarcinoma Seroso , Vesículas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Ascitis/metabolismo , Ascitis/patología , Microambiente Tumoral , Proteómica , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ováricas/diagnóstico
4.
Methods Mol Biol ; 2713: 269-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639129

RESUMEN

Spectral flow cytometry improves flow cytometry panels by resolving the full emission spectra of individual fluorophores, allowing greater flexibility to incorporate more fluorochromes when designing multicolor panels. Additionally, the spectral approach captures the autofluorescence of a sample or cell population (e.g., macrophages, which are highly autofluorescent) that can be considered during unmixing for improved downstream analyses. As the increased complexity of macrophage heterogeneity unravels in the scientific community, it is crucial to obtain high-dimensional data at the single-cell level to resolve these populations.


Asunto(s)
Citometría de Flujo , Macrófagos , Colorantes Fluorescentes , Ionóforos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38062286

RESUMEN

While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.

6.
Cell Mol Immunol ; 20(9): 983-992, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429944

RESUMEN

Macrophages are critical regulators of tissue homeostasis but are also abundant in the tumor microenvironment (TME). In both primary tumors and metastases, such tumor-associated macrophages (TAMs) seem to support tumor development. While we know that TAMs are the dominant immune cells in the TME, their vast heterogeneity and associated functions are only just being unraveled. In this review, we outline the various known TAM populations found thus far and delineate their specialized roles associated with the main stages of cancer progression. We discuss how macrophages may prime the premetastatic niche to enable the growth of a metastasis and then how subsequent metastasis-associated macrophages can support secondary tumor growth. Finally, we speculate on the challenges that remain to be overcome in TAM research.


Asunto(s)
Neoplasias , Humanos , Macrófagos , Macrófagos Asociados a Tumores , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA