Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6624, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857640

RESUMEN

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Asunto(s)
Ecosistema , Suelo , Carbono , Biodiversidad , Biomasa , Plantas , Nitrógeno
2.
Ecol Lett ; 24(12): 2713-2725, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34617374

RESUMEN

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.


Asunto(s)
Pradera , Suelo , Biomasa , Carbono , Ecosistema , Micronutrientes , Nitrógeno/análisis
3.
Ecol Evol ; 10(17): 9532-9537, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953081

RESUMEN

The western fringed prairie orchid (WFPO) is a rare plant found in mesic to wet tallgrass prairies in the Great Plains and Midwest regions of the United States. The size of WFPO populations varies considerably from year to year, and studies have suggested that population size is dependent on precipitation during critical periods in the plant's annual development. We hypothesized that plant height and reproductive effort would also be controlled by precipitation, either during these periods or over a broader period. We acquired available images of WFPO from 21 herbaria, and of these 141 individual plants had information adequate for analysis, although some population/year combinations were represented multiple times. For each specimen, we measured plant height (cm) and reproductive effort (as measured by total flower and bud count). We used bootstrapped linear regression, randomly selecting one individual from each population/year combination, to compare precipitation models, both during critical periods and the various summaries. We found that precipitation during the phenologically critical periods was a poor predictor of plant height and reproductive effort. Of the broader precipitation variables, accumulated precipitation from January 1 to collection date best described plant height. We also used correlations to detect a relationship among the variables WFPO height, reproductive effort, precipitation, latitude, and year of collection. Year of specimen collection was negatively correlated with WFPO plant height and accumulated precipitation, suggesting that both have declined in more recent years. Negative correlations with latitude also suggest height and precipitation decrease in the northern part of WFPO's range. Reproductive effort was not related to tested precipitation variables; however, it was weakly correlated with plant height. Although the results are limited, this study leverages available data and makes inferences on WFPO biology over broad ranges of time (1894-2012) and latitude (37.5°-49.9°).

4.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32786128

RESUMEN

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Asunto(s)
Nitrógeno , Suelo , Animales , Ecosistema , Fertilización , Pradera , Herbivoria , Humanos , Nitrógeno/análisis
5.
Ecology ; 101(5): e02981, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31960948

RESUMEN

Grasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system's sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system's resilience in the face of drought. Here, we examine the effects of experimental nutrient fertilization and the resulting diversity loss on the resistance to and recovery from severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, five annual grasslands in California, and eight perennial grasslands in the Great Plains. We measured rate of resistance as the change in annual aboveground biomass (ANPP) per unit change in growing season precipitation as conditions declined from normal to drought. We measured recovery as the change in ANPP during the postdrought period and the return to normal precipitation. Resistance and recovery did not vary across the 400-mm range of mean growing season precipitation spanned by our sites in the Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistance and increased drought recovery. In the California annual grasslands, arid sites had a greater recovery postdrought than mesic sites, and nutrient addition had no consistent effects on resistance or recovery. Across all study sites, we found that predrought species richness in natural grasslands was not consistently associated with rates of resistance to or recovery from the drought, in contrast to earlier findings from experimentally assembled grassland communities. Taken together, these results suggest that human-induced eutrophication may destabilize grassland primary production, but the effects of this may vary across regions and flora, especially between perennial and annual-dominated grasslands.


Asunto(s)
Sequías , Pradera , Biomasa , Humanos , Nutrientes , Plantas
6.
PLoS One ; 14(5): e0216241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31091292

RESUMEN

Student evaluations of teaching are widely believed to contain gender bias. In this study, we conduct a randomized experiment with the student evaluations of teaching in four classes with large enrollments, two taught by male instructors and two taught by female instructors. In each of the courses, students were randomly assigned to either receive the standard evaluation instrument or the same instrument with language intended to reduce gender bias. Students in the anti-bias language condition had significantly higher rankings of female instructors than students in the standard treatment. There were no differences between treatment groups for male instructors. These results indicate that a relatively simple intervention in language can potentially mitigate gender bias in student evaluation of teaching.


Asunto(s)
Estudios de Evaluación como Asunto , Lenguaje , Sexismo/prevención & control , Enseñanza/normas , Docentes , Femenino , Humanos , Masculino , Sexismo/estadística & datos numéricos , Estudiantes
7.
Ecology ; 99(4): 822-831, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603733

RESUMEN

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.


Asunto(s)
Pradera , Herbivoria , Animales , Biomasa , Ecosistema , Eutrofización , Humanos , Nitrógeno , Nutrientes
8.
Science ; 351(6272): 457, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26823418

RESUMEN

Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.


Asunto(s)
Biodiversidad , Pradera , Desarrollo de la Planta
9.
Nat Commun ; 6: 7710, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26173623

RESUMEN

Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.


Asunto(s)
Biodiversidad , Ecosistema , Alimentos , Pradera , Herbivoria , Especies Introducidas , Plantas , Suelo/química , Animales , Eutrofización , Nitrógeno , Fósforo , Vertebrados
10.
PLoS One ; 10(5): e0125788, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946068

RESUMEN

Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an important first step toward developing a general understanding of the interplay between mutualism and competition in patchy landscapes, and generate qualitative predictions that may be tested in future empirical studies.


Asunto(s)
Ecosistema , Plantas/microbiología , Microbiología del Suelo , Simbiosis/fisiología , Modelos Teóricos , Micorrizas , Desarrollo de la Planta , Dispersión de Semillas/fisiología , Suelo/química
11.
Glob Chang Biol ; 19(12): 3677-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038796

RESUMEN

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.


Asunto(s)
Ecosistema , Especies Introducidas , Dispersión de las Plantas , Poaceae/fisiología , Biodiversidad
12.
Science ; 333(6050): 1750-3, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21940895

RESUMEN

For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters(-2)) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.


Asunto(s)
Biodiversidad , Biomasa , Ecosistema , Plantas , África , Australia , China , Europa (Continente) , Modelos Biológicos , Modelos Estadísticos , América del Norte , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...