Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heredity (Edinb) ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802597

RESUMEN

The information about the magnitude of differences in thermal plasticity both between and within populations, as well as identification of the underlying molecular mechanisms are key to understanding the evolution of thermal plasticity. In particular, genes underlying variation in the physiological response to temperature can provide raw material for selection acting on plastic traits. Using RNAseq, we investigate the transcriptional response to temperature in males and females from bulb mite populations selected for the increased frequency of one of two discrete male morphs (fighter- and scrambler-selected populations) that differ in relative fitness depending on temperature. We show that different mechanisms underlie the divergence in thermal response between fighter- and scrambler-selected populations at decreased vs. increased temperature. Temperature decrease to 18 °C was associated with higher transcriptomic plasticity of males with more elaborate armaments, as indicated by a significant selection-by-temperature interaction effect on the expression of 40 genes, 38 of which were upregulated in fighter-selected populations in response to temperature decrease. In response to 28 °C, no selection-by-temperature interaction in gene expression was detected. Hence, differences in phenotypic response to temperature increase likely depended on genes associated with their distinct morph-specific thermal tolerance. Selection of males also drove gene expression patterns in females. These patterns could be associated with temperature-dependent fitness differences between females from fighter- vs. scrambler-selected populations reported in previous studies. Our study shows that selection for divergent male sexually selected morphologies and behaviors has a potential to drive divergence in metabolic pathways underlying plastic response to temperature in both sexes.

2.
Exp Appl Acarol ; 93(1): 115-132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597987

RESUMEN

Genetic polymorphism in key metabolic genes plays a pivotal role in shaping phenotypes and adapting to varying environments. Polymorphism in the metabolic gene 6-phosphogluconate dehydrogenase (6Pgdh) in bulb mites, Rhizoglyphus robini is characterized by two alleles, S and F, that differ by a single amino acid substitution and correlate with male reproductive fitness. The S-bearing males demonstrate a reproductive advantage. Although the S allele rapidly fixes in laboratory settings, the persistence of polymorphic populations in the wild is noteworthy. This study examines the prevalence and stability of 6Pgdh polymorphism in natural populations across Poland, investigating potential environmental influences and seasonal variations. We found widespread 6Pgdh polymorphism in natural populations, with allele frequencies varying across locations and sampling dates but without clear geographical or seasonal clines. This widespread polymorphism and spatio-temporal variability may be attributed to population demography and gene flow between local populations. We found some correlation between soil properties, particularly cation content (Na, K, Ca, and Mg) and 6Pgdh allele frequencies, showcasing the connection between mite physiology and soil characteristics and highlighting the presence of environment-dependent balancing selection. We conducted experimental fitness assays to determine whether the allele providing the advantage in male-male competition has antagonistic effects on life-history traits and if these effects are temperature-dependent. We found that temperature does not differentially influence development time or juvenile survival in different 6Pgdh genotypes. This study reveals the relationship between genetic variation, environmental factors, and reproductive fitness in natural bulb mite populations, shedding light on the dynamic mechanisms governing 6Pgdh polymorphism.


Asunto(s)
Fosfogluconato Deshidrogenasa , Polimorfismo Genético , Animales , Masculino , Polonia , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Acaridae/genética , Acaridae/fisiología , Rasgos de la Historia de Vida , Femenino , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Frecuencia de los Genes , Ambiente
3.
Sci Rep ; 14(1): 3012, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321127

RESUMEN

Obesity is a complex chronic condition associated with multiple health risks, including visceral obesity, which is particularly detrimental. To gain insight into the mechanisms underlying obesity and its associated pathologies, a novel zebrafish model was established using an innovative high-fat diet (HFD). The primary goal was to induce visceral obesity in zebrafish and study the associated structural changes. To achieve this, a unique HFD consisting of 40% beef fat (HFD40) was developed and supplemented with magnesium aluminometasilicate to improve stability in a high humidity environment. Feeding regimens were initiated for both juvenile (starting at 2 weeks post-fertilization, lasting 18 weeks) and adult zebrafish (3 months post-fertilization, 8 weeks feeding duration). The innovative dietary approach successfully induced visceral obesity in both juvenile and adult zebrafish. This new model provides a valuable tool to study obesity-related pathologies, metabolic syndrome, and potential therapeutic interventions. Most importantly, the low-cost and easy-to-prepare composition of HFD40 was seamlessly incorporated into the water without the need for separation, was readily absorbed by the fish and induced rapid weight gain in the zebrafish population. In conclusion, this study presents a novel HFD40 composition enriched with a high beef fat concentration (40%), which represents a significant advance in the development of an experimental zebrafish model for the study of visceral obesity and associated metabolic changes.


Asunto(s)
Dieta Alta en Grasa , Obesidad Abdominal , Animales , Bovinos , Obesidad Abdominal/metabolismo , Pez Cebra , Obesidad/metabolismo , Aumento de Peso
4.
Animals (Basel) ; 13(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958183

RESUMEN

The study aimed to determine the effect of replacing 75% of inorganic calcium, iron, zinc, and copper salts with organic forms (glycine chelates of these elements) with or without the addition of l-carnitine on some reproductive traits and the blood lipid and mineral profile, as well as mineral and fatty acid profile of pheasant egg yolk. The study was performed on three groups of pheasant hens using glycine chelates with calcitriol (group II) or analogical treatment with the addition of l-carnitine at the level of 100 mg/kg of feed (group III) instead of Ca, Fe, Cu, and Zn salts (control). The replacement of inorganic forms with glycinates contributed to an increase in the number of laid eggs with a concomitant lower share of rejected eggs. The supplementation of organic forms of minerals improved mineral absorption and bioavailability in blood serum as well as in the egg yolk of experimental groups. Egg yolk fat was characterized by a higher proportion of polyunsaturated fatty acids and a favorable ratio of PUFA ω-3/ω-6. The proposed nutritional supplementation of the pheasant's diet might be a good strategy for increasing the nutritional reserves of poultry and improving their reproduction.

5.
Animals (Basel) ; 11(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34944144

RESUMEN

The aim of this study was to determine the effect of substitution of 50% of soybean meal protein with 310-350 g/kg diet of raw chickpea seed protein on the chemical composition, fatty acid profile, dietary value, and antioxidant status of breast and thigh muscles, as well as the antioxidant status of blood serum, in Ross 308 male broilers. In the 42-day experiment, one-day-old male broiler chicks were assigned to two nutritional groups (n = 100 in each, 20 birds in each group, and 5 replications). In the control group, 100% of protein in the feed was derived from soybean meal. In the experimental group, 310-350 g/kg protein from raw chickpea seeds was introduced. Data with a normal distribution were analyzed using the Student t-test, and the relationships between the traits were assessed with the use of Pearson's correlation coefficients. p < 0.05 was considered statistically significant. The replacement with chickpea protein did not exert an impact on the final body weight, feed consumption, and feed conversion ratio compared to the control group. However, it induced changes in the color of the breast muscles (increased L* and b* values), and reduced the cholesterol content. The addition of chickpea seeds improved the fatty acid profile, mainly in the breast muscle. A decrease in the total SFA content and a higher level of unsaturated fatty acids (UFA), UFAs/saturated fatty acids (SFAs), polyunsaturated fatty acids (PUFAs), omega-3, and omega-6 were observed in the experimental group. Additionally, the chickpea-supplemented group exhibited better values of meat quality indicators (atherogenic index-AI; thrombogenic index-TI, ratio of saturated fatty acids to unsaturated fatty acids-S/P, n-6/n-3, hypocholesterolemic/Hypercholesterolemic ratio-h/H). It can be concluded that raw chickpea seeds are a good source of protein in broiler chicken nutrition, and can replace the traditionally used protein source (soybean meal), simultaneously exerting a positive effect on the dietary value of poultry meat and an expected enhancing impact on consumer health.

6.
Biol Rev Camb Philos Soc ; 96(5): 1854-1867, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33960630

RESUMEN

Sexual conflict has extremely important consequences for various evolutionary processes including its effect on local adaptation and extinction probability during environmental change. The awareness that the intensity and dynamics of sexual conflict is highly dependent on the ecological setting of a population has grown in recent years, but much work is yet to be done. Here, we review progress in our understanding of the ecology of sexual conflict and how the environmental sensitivity of such conflict feeds back into population adaptivity and demography, which, in turn, determine a population's chances of surviving a sudden environmental change. We link two possible forms of sexual conflict - intralocus and interlocus sexual conflict - in an environmental context and identify major gaps in our knowledge. These include sexual conflict responses to fluctuating and oscillating environmental changes and its influence on the interplay between interlocus and intralocus sexual conflict, among others. We also highlight the need to move our investigations into more natural settings and to investigate sexual conflict dynamics in wild populations.


Asunto(s)
Selección Genética , Caracteres Sexuales , Adaptación Fisiológica , Animales , Evolución Biológica
7.
J Evol Biol ; 33(10): 1433-1439, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654292

RESUMEN

Sexual selection and conflict can act on genes with important metabolic functions, potentially shaping standing genetic variance in such genes and thus evolutionary potential of populations. Here, using experimental evolution, we show how reproductive competition intensity and thermal environment affect selection on phosphogluconate dehydrogenase (6Pgdh)-a metabolic gene involved in sexual selection and conflict in the bulb mite. The S allele of 6Pgdh increases male success in reproductive competition, but is detrimental to S-bearing males' partners. We found that the rate of the S allele spread increased with the proportion of males in the experimental populations, illustrating that harm to females is more easily compensated for males under more intense sexual competition. Furthermore, we found that under equal sex ratio, the S allele spreads faster at higher temperature. While the direction of selection on 6Pgdh was not reversed in any of the conditions we tested, which would be required for environmental heterogeneity to maintain polymorphism at this locus, our study highlights that ecological and sexual selection can jointly affect selection on important metabolic enzymes.


Asunto(s)
Acaridae/genética , Evolución Biológica , Interacción Gen-Ambiente , Fosfogluconato Deshidrogenasa/genética , Selección Sexual , Alelos , Animales , Femenino , Masculino , Polimorfismo Genético , Reproducción , Razón de Masculinidad , Temperatura
8.
J Evol Biol ; 33(1): 80-88, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31549754

RESUMEN

According to theory, sexual selection in males may efficiently purge mutation load of sexual populations, reducing or fully compensating 'the cost of males'. For this to occur, mutations not only need to be deleterious to both sexes, they also must affect males more than females. A frequently overlooked problem is that relative strength of selection on males versus females may vary between environments, with social conditions being particularly likely to affect selection in males and females differently. Here, we induced mutations in red flour beetles (Tribolium castaneum) and tested their effect in both sexes under three different operational sex ratios (1:2, 1:1 and 2:1). Induced mutations decreased fitness of both males and females, but their effect was not stronger in males. Surprisingly, operational sex ratio did not affect selection against deleterious mutations nor its relative strength in the sexes. Thus, our results show no support for the role of sexual selection in the evolutionary maintenance of sex.


Asunto(s)
Mutación/genética , Selección Genética/genética , Razón de Masculinidad , Tribolium/genética , Animales , Femenino , Masculino
9.
Evolution ; 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29984827

RESUMEN

Selection for secondary sexual trait (SST) elaboration may increase intralocus sexual conflict over the optimal values of traits expressed from shared genomes. This conflict can reduce female fitness, and the resulting gender load can be exacerbated by environmental stress, with consequences for a population's ability to adapt to novel environments. However, how the evolution of SSTs interacts with environment in determining female fitness is not well understood. Here, we investigated this question using replicate lines of bulb mites selected for increased or decreased prevalence of a male SST-thickened legs used as weapons. The fitness of females from these lines was measured at a temperature to which the mites were adapted (24°C), as well as at two novel temperatures: 18°C and 28°C. We found the prevalence of the SST interacted with temperature in determining female fecundity. At 28°C, females from populations with high SST prevalence were less fecund than females from populations in which the SST was rare, but the reverse was true at 18°C. Thus, a novel environment does not universally depress female fitness more in populations with a high degree of sexually selected dimorphism. We discuss possible consequences of the interaction we detected for adaptation to novel environments.

10.
BMC Evol Biol ; 18(1): 109, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29996775

RESUMEN

BACKGROUND: The maintenance of considerable genetic variation in sexually selected traits (SSTs) is puzzling given directional selection expected to act on these traits. A possible explanation is the existence of a genotype-by-environment (GxE) interaction for fitness, by which elaborate SSTs are favored in some environments but selected against in others. In the current study, we look for such interactions for fitness-related traits in the bulb mite, a male-dimorphic species with discontinuous expression of a heritable SST in the form of enlarged legs that are used as weapons. RESULTS: We show that evolution at 18 °C resulted in populations with a higher prevalence of this SST compared to evolution at 24 °C. We further demonstrate that temperature modified male reproductive success in a way that was consistent with these changes. There was a genotype-by-environment interaction for reproductive success - at 18 °C the relative reproductive success of armored males competing with unarmored ones was higher than at the moderate temperature of 24 °C. However, male morph did not have interactive effects with temperature with respect to other life history traits (development time and longevity). CONCLUSIONS: A male genotype that is associated with the expression of a SST interacted with temperature in determining male reproductive success. This interaction caused an elaborate SST to evolve in different directions (more or less prevalent) depending on the thermal environment. The implication of this finding is that seasonal temperature fluctuations have the potential to maintain male polymorphism within populations. Furthermore, spatial heterogeneity in thermal conditions may cause differences among populations in SST selection. This could potentially cause selection against male immigrants from populations in different environments and thus strengthen barriers to gene flow.


Asunto(s)
Evolución Biológica , Interacción Gen-Ambiente , Ácaros/genética , Carácter Cuantitativo Heredable , Reproducción/genética , Conducta Sexual Animal/fisiología , Temperatura , Animales , Femenino , Variación Genética , Genotipo , Longevidad/genética , Masculino , Fenotipo , Polimorfismo Genético , Factores de Tiempo
11.
J Evol Biol ; 31(5): 657-664, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29469939

RESUMEN

Enzyme polymorphism in phosphogluconate dehydrogenase (Pgdh) is a striking example of single gene polymorphism involved in sexual conflict in bulb mite Rhizoglyphus robini. Males homozygous for the S Pgdh allele were shown to achieve higher reproductive success than FF homozygous males, while negatively influencing fecundity of their female partners. Here, we investigate proximate mechanisms responsible for the increased reproductive success of SS males and find that the S allele is associated with shorter time until copulation, higher copulation frequency and increased sperm production. We also show that Pgdh alleles are probably codominant, with SS males gaining the highest reproductive success, FF males - the lowest - and FS-heterozygous males taking an intermediate position in all fitness parameters differentiating males of different genotypes. Additionally, we confirm the negative effect that S-bearing males impose on the fecundity of females they mate with, showing a clear pattern of interlocus sexual conflict. We discuss that this effect is probably associated with increased copulation frequency. Whereas, contrary to what we have predicted, the S allele does not cause increased general male mobility, we speculate that the S allele-bearing males are more efficient in forcing copulation and/or detecting females.


Asunto(s)
Ácaros/enzimología , Ácaros/genética , Fosfogluconato Deshidrogenasa/genética , Alelos , Animales , Femenino , Genes de Insecto/genética , Genotipo , Masculino , Reproducción/genética , Conducta Sexual Animal
12.
Evol Biol ; 44(3): 356-364, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28890581

RESUMEN

The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans-a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)-to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.

13.
Evolution ; 71(3): 650-661, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27943275

RESUMEN

Selection acting on males can reduce mutation load of sexual relative to asexual populations, thus mitigating the twofold cost of sex, provided that it seeks and destroys the same mutations as selection acting on females, but with higher efficiency. This could happen due to sexual selection-a potent evolutionary force that in most systems predominantly affects males. We used replicate populations of red flour beetles (Tribolium castaneum) to study sex-specific selection against deleterious mutations introduced with ionizing radiation. We found no evidence for selection being stronger in males than in females; in fact, we observed a nonsignificant trend in the opposite direction. This suggests that selection on males does not reduce mutation load below the level expected under the (hypothetical) scenario of asexual reproduction. Additionally, we employed a novel approach, based on a simple model, to quantify the relative contributions of sexual and offspring viability selection to the overall selection observed in males. We found them to be similar in magnitude; however, only the offspring viability component was statistically significant. In summary, we found no support for the hypothesis that selection on males in general, and sexual selection in particular, contributes to the evolutionary maintenance of sex.


Asunto(s)
Aptitud Genética , Genética de Población/métodos , Preferencia en el Apareamiento Animal , Selección Genética , Tribolium/fisiología , Animales , Femenino , Masculino , Mutación , Radiación Ionizante , Conducta Sexual Animal
14.
Genome Biol Evol ; 8(8): 2351-7, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27401174

RESUMEN

Intralocus sexual conflict (IASC) prevents males and females from reaching their disparate phenotypic optima and is widespread, but little is known about its genetic underpinnings. In Rhizoglyphus robini, a mite species with alternative male morphs, elevated sexual dimorphism of the armored fighter males (compared to more feminized scramblers males) was previously reported to be associated with increased IASC. Because IASC persists if gene expression patterns are correlated between sexes, we compared gene expression patterns of males and females from the replicate lines selected for increased proportion of fighter or scrambler males (F- and S-lines, respectively). Specifically, we tested the prediction that selection for fighter morph caused correlated changes in gene expression patterns in females. We identified 532 differentially expressed genes (FDR < 0.05) between the F-line and S-line males. Consistent with the prediction, expression levels of these genes also differed between females from respective lines. Thus, significant proportion of genes differentially expressed between sexually selected male phenotypes showed correlated expression levels in females, likely contributing to elevated IASC in F-lines reported in a previous study.


Asunto(s)
Ácaros/crecimiento & desarrollo , Biosíntesis de Proteínas/genética , Selección Genética , Procesos de Determinación del Sexo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ácaros/genética , Fenotipo , Caracteres Sexuales
15.
Evolution ; 68(7): 2137-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24641007

RESUMEN

Intralocus sexual conflict (IASC) arises when fitness optima for a shared trait differ between the sexes; such conflict may help maintain genetic variation within populations. Sex-limited expression of sexually antagonistic traits may help resolve the conflict, but the extent of this resolution remains a subject of debate. In species with alternative male reproductive tactics, unresolved conflict should manifest more in a more sexually dimorphic male phenotype. We tested this prediction in the bulb mite (Rhizoglyphus robini), a species in which aggressive fighters coexist with benign scramblers. To do this, we established replicated lines in which we increased the proportion of each of the alternative male morphs using artificial selection. After approximately 40 generations, the proportion of fighters and scramblers stabilized at >0.9 in fighter- and scrambler-selected lines, respectively. We then measured several female fitness components. As predicted by IASC theory, female fecundity and longevity were lower in lines selected for fighters and higher in lines selected for scramblers. This finding indicates that sexually selected phenotypes are associated with an ontogenetic conflict that is not easily resolved. Furthermore, we suggest that IASC may be an important mechanism contributing to the maintenance of genetic variation in the expression of alternative reproductive tactics.


Asunto(s)
Acaridae/genética , Sitios Genéticos , Selección Genética , Conducta Sexual Animal , Acaridae/fisiología , Animales , Femenino , Fertilidad , Aptitud Genética , Longevidad , Masculino , Fenotipo , Caracteres Sexuales
16.
J Exp Biol ; 216(Pt 24): 4542-8, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24031061

RESUMEN

Temperature is a key environmental factor affecting almost all aspects of life history in ectotherms. Theory predicts that they grow faster, reach smaller sizes and produce smaller offspring when temperature increases. In addition, temperature changes, through their effects on metabolism, may also influence the expression of alternative reproductive phenotypes (ARPs) in ectotherms. Although many studies have investigated the phenotypic plasticity of life history traits in relation to temperature change, little is known about how those traits and phenotypic plasticity may evolve together. In our study we subjected bulb mites (non-model, soil organisms that normally experience rather stable thermal conditions) to experimental evolution in two temperature treatments: control (24°C) and elevated (28°C). After 18 generations, we measured adult body size, egg size and development time of both treatments at control as well as at elevated temperatures (test temperatures). Thus, we were able to detect genetic changes (the effects of selection temperature) and environmental effects (the effects of test temperature). We also observed the ARP expression throughout the experimental evolution. Our results revealed quite complex patterns of life history in traits response to temperature. Mites developed faster and reached smaller sizes at increased temperature, but evolutionary responses to increased temperature were not always parallel to the observed phenotypic plasticity. Additionally, despite smaller body sizes, females laid larger eggs at higher temperature. This effect was more pronounced in animals evolving at elevated temperature. Evolution at increased temperature also affected ARP expression, with the proportion of armored fighters decreasing from generation to generation. We propose that this could be the consequence of temperature sensitivity of the cost-to-benefits ratio of expressing ARPs.


Asunto(s)
Ácaros/anatomía & histología , Ácaros/fisiología , Animales , Tamaño Corporal , Ambiente , Femenino , Calor , Masculino , Ácaros/genética , Fenotipo , Reproducción
17.
PLoS One ; 8(9): e74971, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069369

RESUMEN

Sexual conflict leading to sexual antagonistic coevolution has been hypothesized to drive reproductive isolation in allopatric populations and hence lead to speciation. However, the generality of this speciation mechanism is under debate. We used experimental evolution in the bulb mite Rhizoglyphusrobini to investigate whether sexual conflict promotes reproductive isolation measured comprehensively to include all possible pre- and post-zygotic mechanisms. We established replicate populations in which we either enforced monogamy, and hence removed sexual conflict by making male and female evolutionary interests congruent, or allowed promiscuity. After 35 and 45 generations of experimental evolution, we found no evidence of reproductive isolation between the populations in any of the mating systems. Our results indicate that sexual conflict does not necessarily drive fast reproductive isolation and it may not be a ubiquitous mechanism leading to speciation.


Asunto(s)
Acaridae/fisiología , Aislamiento Reproductivo , Animales , Femenino , Masculino , Conducta Sexual Animal
18.
Proc Biol Sci ; 279(1747): 4661-7, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22977151

RESUMEN

Failure of organisms to adapt to sudden environmental changes may lead to extinction. The type of mating system, by affecting fertility and the strength of sexual selection, may have a major impact on a population's chances to adapt and survive. Here, we use experimental evolution in bulb mites (Rhizoglyphus robini) to examine the effects of the mating system on population performance under environmental change. We demonstrate that populations in which monogamy was enforced suffered a dramatic fitness decline when evolving at an increased temperature, whereas the negative effects of change in a thermal environment were alleviated in polygamous populations. Strikingly, within 17 generations, all monogamous populations experiencing higher temperature went extinct, whereas all polygamous populations survived. Our results show that the mating system may have dramatic effects on the risk of extinction under environmental change.


Asunto(s)
Acaridae/fisiología , Adaptación Fisiológica , Ambiente , Extinción Biológica , Conducta Sexual Animal , Animales , Femenino , Fertilidad , Masculino , Dinámica Poblacional , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...