Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806262

RESUMEN

Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5' AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Autofagia , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Endosomas , Fibroblastos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Esfingolípidos/farmacología , Esfingosina/análogos & derivados
2.
J Fish Biol ; 99(5): 1761-1764, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34328217

RESUMEN

Bigeye tuna (Thunnus obesus, Lowe, 1839) is one of the eight recognized species of the genus Thunnus. It is considered a tropical species distributed in the Atlantic, Pacific and Indian Oceans. To date, no validated presence of this species has been reported inside the Mediterranean Sea. This study, however, confirms, for the first time, the presence of three young individuals of this species within the Mediterranean Sea.


Asunto(s)
Atún , Animales , Océano Índico , Mar Mediterráneo , Atún/genética
3.
Eur J Med Chem ; 216: 113296, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677352

RESUMEN

Acid (AC), neutral (NC) and alkaline ceramidase 3 (ACER3) are the most ubiquitous ceramidases and their therapeutic interest as targets in cancer diseases has been well sustained. This supports the importance of discovering potent and specific inhibitors for further use in combination therapies. Although several ceramidase inhibitors have been reported, most of them target AC and a few focus on NC. In contrast, well characterized ACER3 inhibitors are lacking. Here we report on the synthesis and screening of two series of 1-deoxy(dihydro)ceramide analogs on the three enzymes. Activity was determined using fluorogenic substrates in recombinant human NC (rhNC) and both lysates and intact cells enriched in each enzyme. None of the molecules elicited a remarkable AC inhibitory activity in either experimental setup, while using rhNC, several compounds of both series were active as non-competitive inhibitors with Ki values between 1 and 5 µM. However, a dramatic loss of potency occurred in NC-enriched cell lysates and no activity was elicited in intact cells. Interestingly, several compounds of Series 2 inhibited ACER3 dose-dependently in both cell lysates and intact cells with IC50's around 20 µM. In agreement with their activity in live cells, they provoked a significant increase in the amounts of ceramides. Overall, this study identifies highly selective ACER3 activity blockers in intact cells, opening the door to further medicinal chemistry efforts aimed at developing more potent and specific compounds.


Asunto(s)
Ceramidasa Alcalina/antagonistas & inhibidores , Ceramidas/química , Ceramidasa Alcalina/genética , Ceramidasa Alcalina/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ceramidas/metabolismo , Ceramidas/farmacología , Cromatografía Líquida de Alta Presión , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Espectrometría de Masas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Esfingolípidos/análisis , Especificidad por Sustrato
4.
J Lipid Res ; 60(6): 1174-1181, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926626

RESUMEN

New fluorogenic ceramidase substrates derived from the N-acyl modification of our previously reported probes (RBM14) are reported. While none of the new probes were superior to the known RBM14C12 as acid ceramidase substrates, the corresponding nervonic acid amide (RBM14C24:1) is an efficient and selective substrate for the recombinant human neutral ceramidase, both in cell lysates and in intact cells. A second generation of substrates, incorporating the natural 2-(N-acylamino)-1,3-diol-4-ene framework (compounds RBM15) is also reported. Among them, the corresponding fatty acyl amides with an unsaturated N-acyl chain can be used as substrates to determine alkaline ceramidase (ACER)1 and ACER2 activities. In particular, compound RBM15C18:1 has emerged as the best fluorogenic probe reported so far to measure ACER1 and ACER2 activities in a 96-well plate format.


Asunto(s)
Ceramidasa Alcalina/metabolismo , Esfingolípidos/metabolismo , Umbeliferonas/metabolismo , Línea Celular , Ceramidas/metabolismo , Células HT29 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espectroscopía de Resonancia Magnética , Microsomas/metabolismo , Estructura Molecular , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...