Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(41): 11499-11506, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886087

RESUMEN

Stapled peptides are regarded as the promising next-generation therapeutics because of their improved secondary structure, membrane permeability and metabolic stability as compared with the prototype linear peptides. Usually, stapled peptides are obtained by a hydrocarbon stapling technique, anchoring from paired olefin-terminated unnatural amino acids and the consequent ring-closing metathesis (RCM). To investigate the adaptability of the rigid cyclobutane structure in RCM and expand the chemical diversity of hydrocarbon peptide stapling, we herein described the rational design and efficient synthesis of cyclobutane-based conformationally constrained amino acids, termed (E)-1-amino-3-(but-3-en-1-yl)cyclobutane-1-carboxylic acid (E7) and (Z)-1-amino-3-(but-3-en-1-yl)cyclobutane-1-carboxylic acid (Z7). All four combinations including E7-E7, E7-Z7, Z7-Z7 and Z7-E7 were proven to be applicable in RCM-mediated peptide stapling to afford the corresponding geometry-specific stapled peptides. With the aid of the combined quantum and molecular mechanics, the E7-E7 combination was proven to be optimal in both the RCM reaction and helical stabilization. With the spike protein of SARS-CoV-2 as the target, a series of cyclobutane-bearing stapled peptides were obtained. Among them, E7-E7 geometry-specific stapled peptides indeed exhibit higher α-helicity and thus stronger biological activity than canonical hydrocarbon stapled peptides. We believe that this methodology possesses great potential to expand the scope of the existing peptide stapling strategy. These cyclobutane-bearing restricted anchoring residues served as effective supplements for the existing olefin-terminated unnatural amino acids and the resultant geometry-specific hydrocarbon peptide stapling provided more potential for peptide therapeutics.

2.
J Pept Sci ; 29(12): e3530, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37423610

RESUMEN

The peptide hormone adrenomedullin (ADM) consists of 52 amino acids with a disulfide bond and an amidated C-terminus. Due to the vasodilatory and cardioprotective effects, the agonistic activity of the peptide on the adrenomedullin 1 receptor (AM1 R) is of high pharmacological interest. However, the wild-type peptide shows low metabolic stability leading to rapid degradation in the cardiovascular system. Previous work by our group has identified proteolytic cleavage sites and demonstrated stabilization of ADM by lipidation, cyclization, and N-methylation. Nevertheless, these ADM analogs showed reduced activity and subtype selectivity toward the closely related calcitonin gene-related peptide receptor (CGRPR). Here, we report on the rational development of ADM derivatives with increased proteolytic stability and high receptor selectivity. Stabilizing motifs, including lactamization and lipidation, were evaluated regarding AM1 R and CGRPR activation. Furthermore, the central DKDK motif of the peptide was replaced by oligoethylene glycol linkers. The modified peptides were synthesized by Fmoc/t-Bu solid-phase peptide synthesis and receptor activation of AM1 R and CGRPR was measured by cAMP reporter gene assay. Peptide stability was tested in human blood plasma and porcine liver homogenate and analyzed by RP-HPLC and MALDI-ToF mass spectrometry. Combination of the favorable lactam, lipidation, ethylene glycol linker, and previously described disulfide mimetic resulted in highly stabilized analogs with a plasma half-life of more than 144 h. The compounds display excellent AM1 R activity and wild-type-like selectivity toward CGRPR. Additionally, dose-dependent vasodilatory effects of the ADM derivatives lasted for several hours in rodents. Thus, we successfully developed an ADM analog with long-term in vivo activity.


Asunto(s)
Adrenomedulina , Disulfuros , Humanos , Animales , Porcinos , Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo
3.
J Med Chem ; 66(11): 7280-7303, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37040336

RESUMEN

Herein, we describe the identification, chemical optimization, and preclinical characterization of novel soluble guanylate cyclase (sGC) stimulators. Given the very broad therapeutic opportunities for sGC stimulators, new tailored molecules for distinct indications with specific pharmacokinetics, tissue distribution, and physicochemical properties will be required in the future. Here, we report the ultrahigh-throughput (uHTS)-based discovery of a new class of sGC stimulators from an imidazo[1,2-a]pyridine lead series. Through the extensive and staggered optimization of the initial screening hit, liabilities such as potency, metabolic stability, permeation, and solubility could be substantially improved in parallel. These efforts resulted ultimately in the discovery of the new sGC stimulators 22 and 28. It turned out that BAY 1165747 (BAY-747, 28) could be an ideal treatment alternative for patients with hypertension, especially those not responding to standard anti-hypertensive therapy (resistant hypertension). BAY-747 (28) demonstrated sustained hemodynamic effects up to 24 h in phase 1 studies.


Asunto(s)
Guanilato Ciclasa , Hipertensión , Humanos , Guanilil Ciclasa Soluble/metabolismo , Guanilato Ciclasa/metabolismo , Hipertensión/tratamiento farmacológico , Vasodilatadores , Piridinas/farmacología , Piridinas/uso terapéutico , Óxido Nítrico/metabolismo
4.
Angew Chem Int Ed Engl ; 62(6): e202216365, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515186

RESUMEN

Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.


Asunto(s)
Relaxina , Relaxina/química , Relaxina/metabolismo , Disulfuros/química , Técnicas de Síntesis en Fase Sólida , Proteínas/química , Insulina/química , Receptores Acoplados a Proteínas G/metabolismo
5.
J Pept Sci ; 29(4): e3460, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36285908

RESUMEN

Semaphorin-3A (Sema-3A) is a chemorepellant protein with various biological functions, including kidney development. It interacts with a protein complex consisting of the receptors neuropilin-1 (NRP-1) and plexin-A1. After acute kidney injury, Sema-3A is overexpressed and secreted, leading to a loss of kidney function. The development of peptide inhibitors is a promising approach to modulate the interaction of Sema-3A with its receptor NRP-1. Few interaction points between these binding partners are known. However, an immunoglobulin-like domain-derived peptide of Sema-3A has shown a positive effect on cell proliferation. To specify these interactions between the peptide inhibitor and the Sema-3A-NRP-1 system, the peptides were modified with the photoactivatable amino acids 4-benzoyl-l-phenylalanine or photo-l-leucine by solid-phase peptide synthesis. Activity was tested by an enzyme-linked immunosorbent-based binding assay, and crosslinking experiments were analyzed by Western blot and mass spectrometry, demonstrating a specific binding site of the peptide at Sema-3A. The observed signals for Sema-3A-peptide interaction were found in a defined area of the Sema domain, which was also demonstrated to be involved in NRP-1 binding. The presented data identified the interaction site for further development of therapeutic peptides to treat acute kidney injury by blocking the Sema-3A-NRP-1 interaction.


Asunto(s)
Lesión Renal Aguda , Semaforina-3A , Humanos , Semaforina-3A/metabolismo , Péptidos , Neuropilina-1
6.
J Am Chem Soc ; 144(1): 349-357, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978456

RESUMEN

Disulfide-rich proteins are useful as drugs or tool molecules in biomedical studies, but their synthesis is complicated by the difficulties associated with their folding. Here, we describe a removable glycosylation modification (RGM) strategy that expedites the chemical synthesis of correctly folded proteins with multiple or even interchain disulfide bonds. Our strategy comprises the introduction of simple O-linked ß-N-acetylglucosamine (O-GlcNAc) groups at the Ser/Thr sites that effectively improve the folding of disulfide-rich proteins by stabilization of their folding intermediates. After folding, the O-GlcNAc groups can be efficiently removed using O-GlcNAcase (OGA) to afford the correctly folded proteins. Using this strategy, we completed the synthesis of correctly folded hepcidin, an iron-regulating hormone bearing four pairs of disulfide-bonds, and the first total synthesis of correctly folded interleukin-5 (IL-5), a 26 kDa homodimer cytokine responsible for eosinophil growth and differentiation.


Asunto(s)
Acetilglucosamina
7.
Org Biomol Chem ; 19(41): 9021-9025, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34611692

RESUMEN

The replacement of disulfide bridges with metabolically stable isosteres is a promising strategy to improve the stability of disulfide-rich polypeptides towards reducing agents and isomerases. A diaminodiacid-based strategy is one of the most effective methods to construct disulfide bond mimics, but modified diaminodiacids have not been developed till now. Inspired by the fact that alkylation of disulfide bonds can regulate the activity of polypeptides, herein, we report the first example of thioether bridged diaminodiacids incorporating Cys Cß dimethyl modification, obtained by penicillamine (Pen)-based thiol alkylation. The utility of these new diaminodiacids was demonstrated by the synthesis of disulfide surrogates of oxytocin containing a short-span disulfide bond and of KIIIA with large-span disulfide bonds. This new type of synthetic bridge further extends the diaminodiacid toolbox to facilitate the study of the structure-activity relationship of disulfide-rich peptides.

8.
J Med Chem ; 64(18): 13693-13703, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34472840

RESUMEN

Disrupting the interaction between HIF1α and p300 is a promising strategy to modulate the hypoxia response of tumor cells. Herein, we designed a constrained peptide inhibitor derived from the CITED2/p300 complex to disturb the HIF1α/p300 interaction. Through truncation/mutation screening and a terminal aspartic acid-stabilized strategy, a constrained peptide was constructed with outstanding biochemical/biophysical properties, especially in binding affinity, cell penetration, and serum stability. To date, our study was the first one to showcase that stabilized peptides derived from CITED2 using helix-stabilizing methods acted as a promising candidate for modulating hypoxia-inducible signaling.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos Cíclicos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Represoras/farmacología , Transactivadores/farmacología , Factores de Transcripción p300-CBP/metabolismo , Secuencia de Aminoácidos , Hipoxia de la Célula/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos
9.
RSC Chem Biol ; 2(4): 1274-1284, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34458841

RESUMEN

Stapled peptides are promising protein-protein interaction (PPI) inhibitors that can increase the binding potency. Different from small-molecule inhibitors in which the binding mainly depends on energetic interactions with their protein targets, the binding of stapled peptides has long been suggested to be benefited from entropy. However, it remains challenging to reveal the molecular features that lead to this entropy gain, which could originate from the stabilization of the stapled peptide in solution or from the increased flexibility of the complex upon binding. This hinders the rational design of stapled peptides as PPI inhibitors. Using the guanylate kinase (GK) domain of the postsynaptic density protein 95 (PSD-95) as the target, we quantified the enthalpic and entropic contributions by combining isothermal titration calorimetry (ITC), X-ray crystallography, and free energy calculations based on all-atom molecular dynamics (MD) simulations. We successfully designed a stapled peptide inhibitor (staple 1) of the PSD-95 GK domain that led to a 25-fold increase in the binding affinity (from tens of µMs to 1.36 µM) with high cell permeability. We showed that entropy indeed greatly enhanced the binding affinity and the entropy gain was mainly due to the constrained-helix structure of the stapled peptide in solution (free state). Based on staple 1, we further designed two other stapled peptides (staple 2 and 3), which exerted even larger entropy gains compared to staple 1 because of their more flexible bound complexes (bound state). However, for staple 2 and 3, the overall binding affinities were not improved, as the loose binding in their bound states led to an enthalpic loss that largely compensated the excess entropy gain. Our work suggests that increasing the stability of the stapled peptide in free solution is an effective strategy for the rational design of stapled peptides as PPI inhibitors.

10.
J Org Chem ; 86(13): 8610-8619, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34161109

RESUMEN

Lactam cyclic peptides are a class of interesting and pharmaceutically active molecules, but their previous syntheses have required the use of heavy metals and/or forcing conditions. Here, we describe the efficient application of the previously reported tert-butyl disulfide-protected amino acids and their use in the efficient, solid-phase synthesis of a series of lactam cyclic peptides under mild, metal-free conditions.


Asunto(s)
Aminoácidos , Técnicas de Síntesis en Fase Sólida , Disulfuros , Fluorenos , Lactamas , Péptidos Cíclicos
11.
Chem Sci ; 12(20): 7091-7097, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-34123337

RESUMEN

Herein, we report the development of a facile synthetic strategy for constructing diverse peptide structural architectures via chemoselective peptide ligation. The key advancement involved is to utilize the benzofuran moiety as the peptide salicylaldehyde ester surrogate, and Dap-Ser/Lys-Ser dipeptide as the hydroxyl amino functionality, which could be successfully introduced at the side chain of peptides enabling peptide ligation. With this method, the side chain-to-side chain cyclic peptide, branched/bridged peptides, tailed cyclic peptides and multi-cyclic peptides have been designed and successfully synthesized with native peptidic linkages at the ligation sites. This strategy has provided an alternative strategic opportunity for synthetic peptide development. It also serves as an inspiration for the structural design of PPI inhibitors with new modalities.

12.
Molecules ; 26(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810133

RESUMEN

DNA-encoded libraries (DEL) are increasingly being used to identify new starting points for medicinal chemistry in drug discovery. Herein, we discuss the development of methods that allow the conversion of both primary amines and anilines, attached to DNA, to their corresponding azides in excellent yields. The scope of these diazo-transfer reactions was investigated, and a proof-of-concept has been devised to allow for the synthesis of macrocycles on DNA.


Asunto(s)
ADN , Descubrimiento de Drogas , Compuestos Macrocíclicos/química , Bibliotecas de Moléculas Pequeñas
13.
Commun Chem ; 4(1): 148, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36697625

RESUMEN

Although utilization of fluorine compounds has a long history, synthesis of chiral fluorinated amino acid derivatives with structural diversity and high stereoselectivity is still very appealing and challenging. Here, we report a biomimetic study of enantioselective [1,3]-proton shift of ß,ß-difluoro-α-imine amides catalyzed by chiral quinine derivatives. A wide range of corresponding ß,ß-difluoro-α-amino amides were achieved in good yields with high enantioselectivities. The optically pure ß,ß-difluoro-α-amino acid derivatives were further obtained, which have high application values in the synthesis of fluoro peptides, fluoro amino alcohols and other valuable fluorine-containing molecules.

14.
Chem Asian J ; 15(18): 2793-2802, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32780939

RESUMEN

Disulfide bond-containing peptides are useful molecular scaffolds with diagnostic and therapeutic applications due to their good biological activity and good target selectivity, but their utility is sometimes limited by the lability of the disulfide moiety under reducing conditions and in the presence of disulfide bond isomerase. The development of disulfide surrogates with improved redox stability has been an area of ongoing research; and one possible strategy is based on a diaminodiacid (DADA) moiety, which can be used to synthesize the disulfide bond replacement peptides with precise structures and enhanced stability through automated solid-phase peptide synthesis (SPPS). This review summarizes recent developments in the DADA-based SPPS of peptide disulfide surrogates. Some representative applications and structural studies on the DADA-based disulfide surrogates are described.


Asunto(s)
Disulfuros/química , Péptidos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Ciclización , Proteínas de Unión al ADN/síntesis química , Proteínas de Unión al ADN/química , Hidrocarburos/química , Péptidos/síntesis química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Técnicas de Síntesis en Fase Sólida
15.
Angew Chem Int Ed Engl ; 59(15): 6037-6045, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32060988

RESUMEN

The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide-containing peptides. However, peptides incorporating large-span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)-assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible-to-obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X-ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.

16.
Chem Sci ; 11(30): 7927-7932, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34094161

RESUMEN

Disulfide bridges contribute to the definition and rigidity of polypeptides, but they are inherently unstable in reducing environments and in the presence of isomerases and nucleophiles. Strategies to address these deficiencies, ideally without significantly perturbing the structure of the polypeptide, would be of great interest. One possible surrogate for the disulfide bridge is a simple thioether, but these are susceptible to oxidation. We report the introduction of an ether linkage into the biologically active, disulfide-rich peptides oxytocin, tachyplesin I, and conotoxin α-ImI, using an ether-containing diaminodiacid as the key building block, obtained by the stereoselective ring-opening addition reaction of an aziridine skeleton with a hydroxy group. NMR studies indicated that the derivatives with an ether surrogate bridge exhibited very small change of their three-dimensional structures. The analogs obtained using this novel substitution strategy were found to be more stable than the original peptide in oxidative and reductive conditions; without a loss of bioactivity. This strategy is therefore proposed as a practical and versatile solution to the stability problems associated with cysteine-rich peptides.

17.
Chem Commun (Camb) ; 55(19): 2821-2824, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30762062

RESUMEN

Previous studies have led to opposing hypotheses about the requirement of intermolecular disulfide exchange in the binding of the iron regulatory peptide hepcidin to its receptor ferroportin. To clarify this issue, we used the diaminodiacid approach to replace the disulfide bonds in hepcidin with non-reducible thioether bonds. Our results implied that disulfide exchange is not required for the interaction between hepcidin and ferroportin. This theory is further supported by our development of biologically active minihepcidins that do not show activity dependence on cysteine.

18.
J Pept Sci ; 25(3): e3147, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30680847

RESUMEN

Adrenomedullin (ADM) is a vasoactive peptide hormone of 52 amino acids and belongs to the calcitonin peptide superfamily. Its vasodilative effects are mediated by the interaction with the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor (GPCR), associated with the receptor activity modifying protein 2 (RAMP2) and functionally described as AM-1 receptor (AM1 R). A disulfide-bonded ring structure consisting of six amino acids between Cys16 and Cys21 has been shown to be a key motif for receptor activation. However, the specific structural requirements remain to be elucidated. To investigate the influence of ring size and position of additional functional groups that replace the native disulfide bond, we generated ADM analogs containing thioether, thioacetal, alkane, and lactam bonds between amino acids 16 and 21 by Fmoc/t-Bu solid phase peptide synthesis. Activity studies of the ADM disulfide bond mimetics (DSBM) revealed a strong impact of structural parameters. Interestingly, an increased ring size was tolerated but the activity of lactam-based mimetics depended on its position within the bridging structure. Furthermore, we found the thioacetal as well as the thioether-based mimetics to be well accepted with full AM1 R activity. While a reduced selectivity over the calcitonin gene-related peptide receptor (CGRPR) was observed for the thioethers, the thioacetal was able to retain a wild-type-like selectivity profile. The carbon analog in contrast displayed weak antagonistic properties. These results provide insight into the structural requirements for AM1 R activation as well as new possibilities for the development of metabolically stabilized analogs for therapeutic applications of ADM.


Asunto(s)
Adrenomedulina/química , Adrenomedulina/farmacología , Disulfuros/química , Receptores de Adrenomedulina/agonistas , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/síntesis química , Disulfuros/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
19.
Org Lett ; 20(19): 6074-6078, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30216082

RESUMEN

A new strategy was developed for the synthesis of peptide disulfide-bond mimics using fully orthogonally protected diaminodiacids. This method overcomes the previous problems of heavy-metal contamination and poor compatibility with Fmoc chemistry and provides a practical avenue for the efficient preparation of peptide disulfide-bond mimics.

20.
ChemMedChem ; 13(17): 1797-1805, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29979487

RESUMEN

Adrenomedullin (ADM) is a peptide hormone of the calcitonin gene-related peptide (CGRP) family. It is involved in the regulation of cardiovascular processes such as angiogenesis, vasodilation, and the reduction of oxidative stress. ADM mediates its effects by activation of the ADM-1 and -2 receptors (AM1 R/AM2 R), but also activates the CGRP receptor (CGRPR) with reduced potency. It binds to the extracellular domains of the receptors with its C-terminal binding motif (residues 41-52). The activation motif, consisting of a disulfide-bonded ring structure (residues 16-21) and an adjacent helix (residues 22-30), binds to the transmembrane region and stabilizes the receptor conformation in the active state. While it was shown that the binding motif of ADM guides AM1 R selectivity, there is little information on the activation motif itself. Here, we demonstrate that Thr22 of ADM contributes to the selectivity. By using solid-phase peptide synthesis and cAMP-based signal transduction, we studied the effects of analogues in the activation motif of ADM on AM1 R and CGRPR activity. Our results indicate that Thr22 terminates the α-helix and orients the ring segment by hydrogen bonding. Using olefin stapling, we showed that the α-helical arrangement of the ring segment leads to decreased AM1 R activity, but does not affect CGRPR activation. These results demonstrate that the conformation of the ring segment of ADM has a strong impact on the selectivity within the receptor system.


Asunto(s)
Adrenomedulina/farmacología , Proteína Similar al Receptor de Calcitonina/antagonistas & inhibidores , Cardiotónicos/farmacología , Treonina/química , Adrenomedulina/química , Proteína Similar al Receptor de Calcitonina/metabolismo , Cardiotónicos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...