Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 436: 129285, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739794

RESUMEN

New Caledonia is particularly affected by nickel open pit mining activities because of the presence of ultramafic soils rich in metals. The particles dispersed by atmospheric transport and soil erosion during the excavation of nickel end up by deposition or leaching in rivers where they may be bioaccumulated by organisms living downstream the mines. Despite alarming freshwater metals concentrations, no study investigated the level of their bioaccumulation in eels, and if high bioaccumulation levels occur, the potential consequences on their health. The aim of this study was to determine how eels Anguilla marmorata are impacted in situ by metals issued from mining activity by measuring: morphometric parameters; metal concentrations in tissues and organs and transcription levels of target genes encoding proteins involved in several metabolic key functions. Among organs, liver was found to be the most affected by mining with average nickel concentrations of 5.14 mg/kg versus 1.63 mg/kg for eels away from mines leading to dysregulation of numerous genes involved in oxidative stress, DNA repair, apoptosis, reproduction and both lipid and mitochondrial metabolisms. This study should allow us to define in an integrated way if metals released by mining activities influence metals bioaccumulation in eels and induce biological effects.


Asunto(s)
Anguilla , Anguilla/fisiología , Animales , Metales/toxicidad , Minería , Nueva Caledonia , Níquel/toxicidad , Ríos
2.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817093

RESUMEN

The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.


Asunto(s)
Adhesinas Bacterianas , Adhesión Bacteriana/genética , Biopelículas/crecimiento & desarrollo , Sistemas de Secreción Tipo V , Veillonella/fisiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo
3.
Curr Microbiol ; 77(10): 3035-3043, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32683468

RESUMEN

Mostly studied as a zoonosis, leptospirosis is also an environment-borne infection and most human cases originate from soil or water contaminations. Yet, only few studies have been interested in the survival of pathogenic Leptospira in freshwater. In this study, water microcosms were designed to evaluate the survival and virulence of Leptospira spp. for 2 years. Four commercial bottled drinking waters and a non-ionized water, all previously filter-sterilized, were studied. Either one of two Leptospira interrogans strains, one Leptospira borgpetersenii strain, or a saprophytic Leptospira biflexa was inoculated in these waters under nutrient-deprived conditions. Molecular, microscopic and cultural approaches were used to study Leptospira survival. Direct virulence of the pathogens was assessed using animal challenge without re-culturing. Our results confirmed the capacity of pathogenic Leptospira to survive for more than a year in water. In addition, we showed the ability of L. interrogans in nutrient-deprived conditions to directly cause systemic infection in susceptible animals. To our knowledge, this is the first report of direct infection of a susceptible host with Leptospira following a long starvation and survival period in nutrient-deprived water. Our results also suggest that Leptospira turned into a physiological "survival" state in harsh freshwater conditions. These data are of prime importance considering that freshwater is a major source of Leptospira infections. Environmental survival and virulence of pathogenic Leptospira spp. are becoming a crucial challenge to determine the environmental risk and adopt relevant prevention and control strategies.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Animales , Humanos , Virulencia , Agua
4.
NPJ Biofilms Microbiomes ; 6(1): 24, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532998

RESUMEN

The zoonotic bacterium Leptospira interrogans is the aetiological agent of leptospirosis, a re-emerging infectious disease that is a growing public health concern. Most human cases of leptospirosis result from environmental infection. Biofilm formation and its contribution to the persistence of virulent leptospires in the environment or in the host have scarcely been addressed. Here, we examined spatial and time-domain changes in biofilm production by L. interrogans. Our observations showed that biofilm formation in L. interrogans is a highly dynamic process and leads to a polarized architecture. We notably found that the biofilm matrix is composed of extracellular DNA, which enhances the biofilm's cohesiveness. By studying L. interrogans mutants with defective diguanylate cyclase and phosphodiesterase genes, we show that biofilm production is regulated by intracellular levels of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and underpins the bacterium's ability to withstand a wide variety of simulated environmental stresses. Our present results show how the c-di-GMP pathway regulates biofilm formation by L. interrogans, provide insights into the environmental persistence of L. interrogans and, more generally, highlight leptospirosis as an environment-borne threat to human health.


Asunto(s)
Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Leptospira interrogans/fisiología , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Animales , Proteínas Bacterianas/genética , Zoonosis Bacterianas/microbiología , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mutación , Análisis Espacio-Temporal , Estrés Fisiológico
5.
PLoS One ; 15(1): e0227055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31986154

RESUMEN

BACKGROUND: Leptospirosis, caused by pathogenic Leptospira, is a zoonosis of global distribution. This infectious disease is mainly transmitted by indirect exposure to urine of asymptomatic animals via the environment. As human cases generally occur after heavy rain, an emerging hypothesis suggests that rainfall re-suspend leptospires together with soil particles. Bacteria are then carried to surface water, where humans get exposed. It is currently assumed that pathogenic leptospires can survive in the environment but do not multiply. However, little is known on their capacity to survive in a soil and freshwater environment. METHODS: We conducted a systematic review on Leptospira and leptospirosis in the environment in order to collect current knowledge on the lifestyle of Leptospira in soil and water. In total, 86 scientific articles retrieved from online databases or institutional libraries were included in this study. PRINCIPALS FINDINGS/SIGNIFICANCE: This work identified evidence of survival of Leptospira in the environment but major gaps remain about the survival of virulent species associated with human and animal diseases. Studies providing quantitative data on Leptospira in soil and water are a very recent trend, but must be interpreted with caution because of the uncertainty in the species identification. Several studies mentioned the presence of Leptospira in soils more frequently than in waters, supporting the hypothesis of the soil habitat and dispersion of Leptospira with re-suspended soil particles during heavy rain. In a near future, the growing use of high throughput sequencing will offer new opportunities to improve our understanding of the habitat of Leptospira in the environment. This better insight into the risk of leptospirosis will allow implementing efficient control measures and prevention for the human and animal populations exposed.


Asunto(s)
Leptospira/patogenicidad , Microbiología del Suelo , Microbiología del Agua , Animales , Humanos , Leptospirosis/transmisión
6.
Front Microbiol ; 9: 816, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765361

RESUMEN

Leptospirosis is an important environmental disease and a major threat to human health causing at least 1 million clinical infections annually. There has recently been a growing interest in understanding the environmental lifestyle of Leptospira. However, Leptospira isolation from complex environmental samples is difficult and time-consuming and few tools are available to identify Leptospira isolates at the species level. Here, we propose a polyphasic isolation and identification scheme, which might prove useful to recover and identify environmental isolates and select those to be submitted to whole-genome sequencing. Using this approach, we recently described 12 novel Leptospira species for which we propose names. We also show that MALDI-ToF MS allows rapid and reliable identification and provide an extensive database of Leptospira MALDI-ToF mass spectra, which will be valuable to researchers in the leptospirosis community for species identification. Lastly, we also re-evaluate some of the current techniques for the molecular diagnosis of leptospirosis taking into account the extensive and recently revealed biodiversity of Leptospira in the environment. In conclusion, we describe our method for isolating Leptospira from the environment, confirm the usefulness of mass spectrometry for species identification and propose names for 12 novel species. This also offers the opportunity to refine current molecular diagnostic tools.

7.
Microb Genom ; 4(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29310748

RESUMEN

Despite recent advances in our understanding of the genomics of members of the genus Leptospira, little is known on how virulence has emerged in this heterogeneous bacterial genus as well as on the lifestyle of pathogenic members of the genus Leptospira outside animal hosts. Here, we isolated 12 novel species of the genus Leptospira from tropical soils, significantly increasing the number of known species to 35 and finding evidence of highly unexplored biodiversity in the genus. Extended comparative phylogenomics and pan-genome analyses at the genus level by incorporating 26 novel genomes, revealed that, the traditional leptospiral 'pathogens' cluster, as defined by their phylogenetic position, can be split in two groups with distinct virulence potential and accessory gene patterns. These genomic distinctions are strongly linked to the ability to cause or not severe infections in animal models and humans. Our results not only provide new insights into virulence evolution in the members of the genus Leptospira, but also lay the foundations for refining the classification of the pathogenic species.


Asunto(s)
Biodiversidad , Evolución Molecular , Genoma Bacteriano , Leptospira/genética , Leptospira/patogenicidad , Leptospirosis/epidemiología , Leptospirosis/microbiología , Microbiología del Suelo , Duplicación de Gen , Humanos , Leptospira/clasificación , Leptospira/aislamiento & purificación , Leptospirosis/diagnóstico , Leptospirosis/mortalidad , Nueva Caledonia/epidemiología , Filogenia , Prevalencia , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Estadísticas no Paramétricas , Virulencia/genética , Secuenciación Completa del Genoma
8.
Am J Trop Med Hyg ; 97(4): 1088-1093, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28722586

RESUMEN

Rodents are the main reservoir animals of leptospirosis. In this study, we characterized and quantified the urinary excretion dynamics of Leptospira by Mus musculus infected with 2 × 108 virulent Leptospira borgpetersenii serogroup Ballum. Each micturition was collected separately in metabolic cages, at 12 time points from 7 to 117 days post-infection (dpi). We detected Leptospira in all urine samples collected (up to 8 per time point per mouse) proving that Leptospira excretion is continuous with ca. 90% live L. borgpetersenii Ballum, revealed by viability quantitative polymerase chain reaction. Microscopic visualization by Live/Dead fluorescence confirmed this high proportion of live bacteria and demonstrated that L. borgpetersenii Ballum are excreted, at least partly, as bacterial aggregates. We observed two distinct phases in the excretion dynamics, first an increase in Leptospira concentration shed in the urine between 7 and 63 dpi followed by a plateau phase from 63 dpi onward, with up to 3 × 107Leptospira per mL of urine. These two phases seem to correspond to progressive colonization of renal tubules first, then to stable cell survival and maintenance in kidneys. Therefore, chronically infected adult mice are able to contaminate the environment via urine at each micturition event throughout their lifetime. Because Leptospira excretion reached its maximum 2 months after infection, older rodents have a greater risk of contaminating their surrounding environment.


Asunto(s)
Riñón/parasitología , Leptospira/aislamiento & purificación , Leptospirosis/fisiopatología , Ratones/parasitología , Orina/parasitología , Animales , Reacción en Cadena de la Polimerasa
9.
PLoS Negl Trop Dis ; 11(2): e0005414, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28241042

RESUMEN

BACKGROUND: Leptospirosis is an important re-emerging infectious disease that affects humans worldwide. Infection occurs from indirect environment-mediated exposure to pathogenic leptospires through contaminated watered environments. The ability of pathogenic leptospires to persist in the aqueous environment is a key factor in transmission to new hosts. Hence, an effort was made to detect pathogenic leptospires in complex environmental samples, to genotype positive samples and to assess leptospiral viability over time. METHODOLOGY/PRINCIPAL FINDINGS: We focused our study on human leptospirosis cases infected with the New Caledonian Leptospira interrogans serovar Pyrogenes. Epidemiologically related to freshwater contaminations, this strain is responsible for ca. 25% of human cases in New Caledonia. We screened soil and water samples retrieved from suspected environmental infection sites for the pathogen-specific leptospiral gene lipL-32. Soil samples from all suspected infection sites tested showed detectable levels of pathogenic leptospiral DNA. More importantly, we demonstrated by viability qPCR that those pathogenic leptospires were viable and persisted in infection sites for several weeks after the index contamination event. Further, molecular phylogenetic analyses of the leptospiral lfb-1 gene successfully linked the identity of environmental Leptospira to the corresponding human-infecting strain. CONCLUSIONS/SIGNIFICANCE: Altogether, this study illustrates the potential of quantitative viability-PCR assay for the rapid detection of viable leptospires in environmental samples, which might open avenues to strategies aimed at assessing environmental risk.


Asunto(s)
Leptospira interrogans/aislamiento & purificación , Leptospira interrogans/fisiología , Leptospirosis/epidemiología , Leptospirosis/microbiología , Viabilidad Microbiana , Ríos/microbiología , Microbiología del Suelo , Proteínas de la Membrana Bacteriana Externa/genética , Análisis por Conglomerados , Humanos , Leptospira interrogans/clasificación , Leptospira interrogans/genética , Lipoproteínas/genética , Epidemiología Molecular , Nueva Caledonia/epidemiología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...