Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 108(7): 1087-1111, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34297852

RESUMEN

PREMISE: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.


Asunto(s)
Magnoliopsida , Myrtales , Núcleo Celular , Magnoliopsida/genética , Filogenia
2.
Mol Ecol ; 26(4): 1008-1021, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27997066

RESUMEN

Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo-Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.


Asunto(s)
Genética de Población , Hydrocharitaceae/genética , Movimientos del Agua , Australia , Flujo Génico , Variación Genética , Océano Índico , Indonesia , Repeticiones de Microsatélite , Océano Pacífico , Filogeografía , Polimorfismo de Nucleótido Simple , Australia Occidental
3.
PLoS One ; 9(10): e110308, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25340350

RESUMEN

New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a 'museum' for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.


Asunto(s)
Biodiversidad , Evolución Biológica , Tracheophyta/fisiología , Teorema de Bayes , Calibración , Fósiles , Nueva Caledonia , Filogenia , Análisis de Secuencia de ADN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...