Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 598(10): 1170-1198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140813

RESUMEN

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.


Asunto(s)
Gotas Lipídicas , Perilipinas , Humanos , Gotas Lipídicas/metabolismo , Animales , Perilipinas/metabolismo , Perilipinas/genética , Metabolismo de los Lípidos , Lipólisis , Perilipina-1/metabolismo , Perilipina-1/genética
2.
J Med Chem ; 66(20): 14208-14220, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37795600

RESUMEN

Schweinfurthins (SWs) are naturally occurring prenylated stilbenes with promising anticancer properties. They act through a novel mechanism of action similar to that of other families of natural compounds. Their known target, oxysterol-binding protein (OSBP), plays a crucial role in controlling the intracellular distribution of cholesterol. We synthesized 15 analogues of SWs and demonstrated for the first time that their cytotoxicity as well as that of natural derivatives correlates with their affinity for OSBP. Through this extensive SAR study, we selected one synthetic analogue obtained in one step from SW-G. Using its fluorescence properties, we showed that this compound recapitulates the effect of natural SW-G in cells and confirmed that it leads to cell death via the same mechanism. Finally, after pilot PK experiments, we provided the first evidence of its in vivo efficacy in combination with temozolomide in a patient-derived glioblastoma xenograft model.


Asunto(s)
Oxiesteroles , Receptores de Esteroides , Humanos , Receptores de Esteroides/metabolismo , Colesterol/metabolismo
3.
Dev Cell ; 58(2): 121-138.e9, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36693319

RESUMEN

Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.


Asunto(s)
Proteínas de la Membrana , Proteínas de Transporte Vesicular , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Proteínas Portadoras/metabolismo , Lípidos/química
4.
Nat Commun ; 12(1): 3459, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103503

RESUMEN

Membrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.

5.
Med Sci (Paris) ; 36(2): 130-136, 2020 Feb.
Artículo en Francés | MEDLINE | ID: mdl-32129748

RESUMEN

Cholesterol is synthesized in the endoplasmic reticulum (RE) and then transported to cellular compartments whose functions require high cholesterol levels. Here, we describe the mechanism by which cholesterol is transported from the RE to the trans-Golgi network (TGN) by the protein OSBP (Oxysterol-Binding Protein). OSBP has two complementary activities. First, it tethers the RE to the TGN by forming a contact site where the two membranes are about twenty nanometers away. Then, it exchanges RE cholesterol for a TGN lipid, phosphatidylinositol 4-phosphate (PI4P). Eventually, PI4P is hydrolyzed at the RE, making the exchange cycle irreversible. Thus, OSBP is at the center of a lipid exchange market where a transported cholesterol "costs" a PI4P. Antiviral or anti-cancer molecules target OSBP, suggesting the importance of the OSBP cycle in different physiopathological contexts. The general principles of this cycle are shared by other lipid-transfer proteins.


TITLE: Un marché d'échange de lipides - Transport vectoriel du cholestérol par la protéine OSBP. ABSTRACT: Le cholestérol est synthétisé dans le réticulum endoplasmique (RE) puis transporté vers les compartiments cellulaires dont la fonction en nécessite un taux élevé. Nous décrivons ici le mécanisme de transport du cholestérol du RE vers le réseau trans golgien (TGN) par la protéine OSBP (oxysterol binding protein). Celle-ci présente deux activités complémentaires : elle arrime les deux compartiments, RE et TGN, en formant un site de contact où les deux membranes sont à une vingtaine de nanomètres de distance ; puis elle échange le cholestérol du RE avec un lipide présent dans le TGN, le phosphatidylinositol 4-phosphate (PI4P). Dans le RE, le PI4P est hydrolysé, rendant le cycle d'échange irréversible. OSBP est donc au cœur d'un marché d'échange de lipides dans lequel un cholestérol transporté « coûte ¼ un PI4P. Des molécules à activités antivirales ou anticancéreuses ont pour cible OSBP, suggérant une importance dans différents contextes physiopathologiques du cycle d'OSBP, dont les bases générales sont partagées par d'autres protéines transporteurs de lipides.


Asunto(s)
Colesterol/metabolismo , Metabolismo de los Lípidos/fisiología , Receptores de Esteroides/metabolismo , Animales , Transporte Biológico , Retículo Endoplásmico/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/fisiología
6.
J Biol Chem ; 295(13): 4277-4288, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32075908

RESUMEN

ORPphilins are bioactive natural products that strongly and selectively inhibit the growth of some cancer cell lines and are proposed to target intracellular lipid-transfer proteins of the oxysterol-binding protein (OSBP) family. These conserved proteins exchange key lipids, such as cholesterol and phosphatidylinositol 4-phosphate (PI(4)P), between organelle membranes. Among ORPphilins, molecules of the schweinfurthin family interfere with intracellular lipid distribution and metabolism, but their functioning at the molecular level is poorly understood. We report here that cell line sensitivity to schweinfurthin G (SWG) is inversely proportional to cellular OSBP levels. By taking advantage of the intrinsic fluorescence of SWG, we followed its fate in cell cultures and show that its incorporation at the trans-Golgi network depends on cellular abundance of OSBP. Using in vitro membrane reconstitution systems and cellular imaging approaches, we also report that SWG inhibits specifically the lipid transfer activity of OSBP. As a consequence, post-Golgi trafficking, membrane cholesterol levels, and PI(4)P turnover were affected. Finally, using intermolecular FRET analysis, we demonstrate that SWG directly binds to the lipid-binding cavity of OSBP. Collectively these results describe SWG as a specific and intrinsically fluorescent pharmacological tool for dissecting OSBP properties at the cellular and molecular levels. Our findings indicate that SWG binds OSBP with nanomolar affinity, that this binding is sensitive to the membrane environment, and that SWG inhibits the OSBP-catalyzed lipid exchange cycle.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Lípidos/genética , Receptores de Esteroides/metabolismo , Estilbenos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Fluorescencia , Humanos , Lípidos/química , Unión Proteica/genética , Transporte de Proteínas/genética , Receptores de Esteroides/química , Estilbenos/química , Red trans-Golgi/química , Red trans-Golgi/genética
7.
Dev Cell ; 49(2): 220-234.e8, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30905771

RESUMEN

Lipid transfer proteins (LTPs) acting at membrane contact sites (MCS) between the ER and other organelles contain domains involved in heterotypic (e.g., ER to Golgi) membrane tethering as well as domains involved in lipid transfer. Here, we show that a long ≈90 aa intrinsically unfolded sequence at the N terminus of oxysterol-binding protein (OSBP) controls OSBP orientation and dynamics at MCS. This Gly-Pro-Ala-rich sequence, whose hydrodynamic radius is twice as that of folded domains, prevents the two PH domains of the OSBP dimer from homotypically tethering two Golgi-like membranes and considerably facilitates OSBP in-plane diffusion and recycling at MCS. Although quite distant in sequence, the N terminus of OSBP-related protein-4 (ORP4) has similar effects. We propose that N-terminal sequences of low complexity in ORPs form an entropic barrier that restrains protein orientation, limits protein density, and facilitates protein mobility in the narrow and crowded MCS environment.


Asunto(s)
Proteínas Portadoras/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Portadoras/fisiología , Línea Celular , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Lípidos/fisiología , Membranas Mitocondriales/metabolismo , Orgánulos/metabolismo , Dominios Proteicos/fisiología , Receptores de Esteroides/genética , Receptores de Esteroides/fisiología , Esteroles/metabolismo
8.
ACS Infect Dis ; 5(6): 962-973, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30919621

RESUMEN

Phosphatidylinositol-4 kinase III ß (PI4KB) and oxysterol-binding protein (OSBP) family I provide a conserved host pathway required for enterovirus replication. Here, we analyze the role and essentiality of this pathway in enterovirus replication. Phosphatidylinositol 4-phosphate (PI4P) production and cholesterol accumulation in the replication organelle (RO) are severely suppressed in cells infected with a poliovirus (PV) mutant isolated from a PI4KB-knockout cell line (RD[Δ PI4KB]). Major determinants of the mutant for infectivity in RD(Δ PI4KB) cells map to the A5270U(3A-R54W) and U3881C(2B-F17L) mutations. The 3A mutation is required for PI4KB-independent development of RO. The 2B mutation rather sensitizes PV to PI4KB/OSBP inhibitors by itself but confers substantially complete resistance to the inhibitors with the 3A mutation. The 2B mutation also confers hypersensitivity to interferon alpha treatment on PV. These suggest that the PI4KB/OSBP pathway is not necessarily essential for enterovirus replication in vitro. This work supports a two-step resistance model of enterovirus to PI4KB/OSBP inhibitors involving unique recessive epistasis of 3A and 2B and offers insights into a potential evolutionary pathway of enterovirus toward independence from the PI4KB/OSBP pathway.


Asunto(s)
Evolución Molecular , Mutación , Fosfatidilinositol-4-Fosfato 3-Quinasa/genética , Poliovirus/genética , Receptores de Esteroides/genética , Antivirales/farmacología , Línea Celular Tumoral , Epistasis Genética , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/genética , Redes y Vías Metabólicas , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-4-Fosfato 3-Quinasa/antagonistas & inhibidores , Fosfatidilinositol-4-Fosfato 3-Quinasa/metabolismo , Poliovirus/fisiología , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/genética , Replicación Viral
9.
Annu Rev Biochem ; 87: 809-837, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29596003

RESUMEN

To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.


Asunto(s)
Colesterol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico Activo , Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Oxiesteroles/metabolismo , Dominios y Motivos de Interacción de Proteínas , Receptores de Esteroides/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación Viral/fisiología
10.
EMBO J ; 36(21): 3156-3174, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28978670

RESUMEN

The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol-binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi network (TGN). Using the inhibitor OSW-1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells. Blocking OSBP causes accumulation of sterols at ER/lipid droplets at the expense of TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP consumes about half of the total cellular pool of PI4P, a consumption that depends on the amount of cholesterol to be transported. Inhibiting the spatially restricted PI4-kinase PI4KIIIß triggers large periodic traveling waves of PI4P across the TGN These waves are cadenced by long-range PI4P production by PI4KIIα and PI4P consumption by OSBP Collectively, these data indicate a massive spatiotemporal coupling between cholesterol transport and PI4P turnover via OSBP and PI4-kinases to control the lipid composition of subcellular membranes.


Asunto(s)
Colesterol/metabolismo , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico , Colestenonas/farmacología , Dicarbetoxidihidrocolidina/análogos & derivados , Dicarbetoxidihidrocolidina/química , Retículo Endoplásmico/metabolismo , Células Epiteliales/citología , Colorantes Fluorescentes/química , Expresión Génica , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/genética , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Saponinas/farmacología , Imagen de Lapso de Tiempo , Red trans-Golgi/metabolismo
11.
Antiviral Res ; 140: 37-44, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28088354

RESUMEN

The genus Enterovirus (e.g. poliovirus, coxsackievirus, rhinovirus) of the Picornaviridae family of positive-strand RNA viruses includes many important pathogens linked to a range of acute and chronic diseases for which no approved antiviral therapy is available. Targeting a step in the life cycle that is highly conserved provides an attractive strategy for developing broad-range inhibitors of enterovirus infection. A step that is currently explored as a target for the development of antivirals is the formation of replication organelles, which support replication of the viral genome. To build replication organelles, enteroviruses rewire cellular machinery and hijack lipid homeostasis pathways. For example, enteroviruses exploit the PI4KIIIß-PI4P-OSBP pathway to direct cholesterol to replication organelles. Here, we uncover that TTP-8307, a known enterovirus replication inhibitor, acts through the PI4KIIIß-PI4P-OSBP pathway by directly inhibiting OSBP activity. However, despite a shared mechanism of TTP-8307 with established OSBP inhibitors (itraconazole and OSW-1), we identify a number of notable differences between these compounds. The antiviral activity of TTP-8307 extends to other viruses that require OSBP, namely the picornavirus encephalomyocarditis virus and the flavivirus hepatitis C virus.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Enterovirus/efectos de los fármacos , Imidazoles/farmacología , Receptores de Esteroides/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Colestenonas/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Genoma Viral/efectos de los fármacos , Células HeLa , Humanos , Itraconazol/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos de los fármacos , Poliovirus/efectos de los fármacos , Receptores de Esteroides/metabolismo , Rhinovirus/efectos de los fármacos , Saponinas/farmacología
12.
Cell Rep ; 10(4): 600-15, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25640182

RESUMEN

Itraconazole (ITZ) is a well-known antifungal agent that also has anticancer activity. In this study, we identify ITZ as a broad-spectrum inhibitor of enteroviruses (e.g., poliovirus, coxsackievirus, enterovirus-71, rhinovirus). We demonstrate that ITZ inhibits viral RNA replication by targeting oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4). Consistently, OSW-1, a specific OSBP/ORP4 antagonist, also inhibits enterovirus replication. Knockdown of OSBP inhibits virus replication, whereas overexpression of OSBP or ORP4 counteracts the antiviral effects of ITZ and OSW-1. ITZ binds OSBP and inhibits its function, i.e., shuttling of cholesterol and phosphatidylinositol-4-phosphate between membranes, thereby likely perturbing the virus-induced membrane alterations essential for viral replication organelle formation. ITZ also inhibits hepatitis C virus replication, which also relies on OSBP. Together, these data implicate OSBP/ORP4 as molecular targets of ITZ and point to an essential role of OSBP/ORP4-mediated lipid exchange in virus replication that can be targeted by antiviral drugs.


Asunto(s)
Enterovirus/efectos de los fármacos , Enterovirus/metabolismo , Itraconazol/farmacología , Receptores de Esteroides/metabolismo , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Línea Celular Tumoral , Humanos
13.
Biochem Soc Trans ; 42(5): 1465-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233433

RESUMEN

In eukaryotic cells, a sterol gradient exists between the early and late regions of the secretory pathway. This gradient seems to rely on non-vesicular transport mechanisms mediated by specialized carriers. The oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) family has been assumed initially to exclusively include proteins acting as sterol sensors/transporters and many efforts have been made to determine their mode of action. Our recent studies have demonstrated that some ORP/Osh proteins are not mere sterol transporters, but sterol/phosphatidylinositol 4-phosphate [PI(4)P] exchangers. They exploit the PI(4)P gradient at the endoplasmic reticulum (ER)/Golgi interface, or at membrane-contact sites between these compartments, to actively create a sterol gradient. Other recent reports have suggested that all ORP/Osh proteins bind PI(4)P and recognize a second lipid that is not necessary sterol. We have thus proposed that ORP/Osh proteins use PI(4)P gradients between organelles to convey various lipid species.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Receptores de Esteroides/metabolismo , Animales , Transporte Biológico , Humanos , Ligandos , Proteínas de la Membrana/química , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores de Esteroides/química
14.
Cell ; 155(4): 830-43, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209621

RESUMEN

Several proteins at endoplasmic reticulum (ER)-Golgi membrane contact sites contain a PH domain that interacts with the Golgi phosphoinositide PI(4)P, a FFAT motif that interacts with the ER protein VAP-A, and a lipid transfer domain. This architecture suggests the ability to both tether organelles and transport lipids between them. We show that in oxysterol binding protein (OSBP) these two activities are coupled by a four-step cycle. Membrane tethering by the PH domain and the FFAT motif enables sterol transfer by the lipid transfer domain (ORD), followed by back transfer of PI(4)P by the ORD. Finally, PI(4)P is hydrolyzed in cis by the ER protein Sac1. The energy provided by PI(4)P hydrolysis drives sterol transfer and allows negative feedback when PI(4)P becomes limiting. Other lipid transfer proteins are tethered by the same mechanism. Thus, OSBP-mediated back transfer of PI(4)P might coordinate the transfer of other lipid species at the ER-Golgi interface.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Citosol/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólisis , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Receptores de Esteroides/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo
15.
Traffic ; 14(12): 1228-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24034583

RESUMEN

Saturated fatty acids (SFA) have been reported to alter organelle integrity and function in many cell types, including muscle and pancreatic ß-cells, adipocytes, hepatocytes and cardiomyocytes. SFA accumulation results in increased amounts of ceramides/sphingolipids and saturated phospholipids (PL). In this study, using a yeast-based model that recapitulates most of the trademarks of SFA-induced lipotoxicity in mammalian cells, we demonstrate that these lipid species act at different levels of the secretory pathway. Ceramides mostly appear to modulate the induction of the unfolded protein response and the transcription of nutrient transporters destined to the cell surface. On the other hand, saturated PL, by altering membrane properties, directly impact vesicular budding at later steps in the secretory pathway, i.e. at the trans-Golgi Network level. They appear to do so by increasing lipid order within intracellular membranes which, in turn, alters the recruitment of loose lipid packing-sensing proteins, required for optimal budding, to nascent vesicles. We propose that this latter general mechanism could account for the well-documented deleterious impacts of fatty acids on the last steps of the secretory pathway in several cell types.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vías Secretoras , Ceramidas/metabolismo , Fosfolípidos/metabolismo , Vesículas Transportadoras/metabolismo , Respuesta de Proteína Desplegada , Red trans-Golgi/metabolismo
16.
Dev Cell ; 23(5): 886-95, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23153485

RESUMEN

Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably sensors of membrane curvature, support the prediction that the cell contains two broad membrane territories: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects, and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting features of these territories provide specificity for reactions occurring along the secretory pathway, on the plasma membrane, and also on lipid droplets and autophagosomes.


Asunto(s)
Lípidos de la Membrana/química , Orgánulos/química , Animales , Humanos , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Orgánulos/metabolismo , Fagocitosis , Electricidad Estática
17.
J Cell Biol ; 194(1): 89-103, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21746853

RESUMEN

Membrane curvature sensors have diverse structures and chemistries, suggesting that they might have the intrinsic capacity to discriminate between different types of vesicles in cells. In this paper, we compare the in vitro and in vivo membrane-binding properties of two curvature sensors that form very different amphipathic helices: the amphipathic lipid-packing sensor (ALPS) motif of a Golgi vesicle tether and the synaptic vesicle protein α-synuclein, a causative agent of Parkinson's disease. We demonstrate the mechanism by which α-synuclein senses membrane curvature. Unlike ALPS motifs, α-synuclein has a poorly developed hydrophobic face, and this feature explains its dual sensitivity to negatively charged lipids and to membrane curvature. When expressed in yeast cells, these two curvature sensors were targeted to different classes of vesicles, those of the early secretory pathway for ALPS motifs and to negatively charged endocytic/post-Golgi vesicles in the case of α-synuclein. Through structures with complementary chemistries, α-synuclein and ALPS motifs target distinct vesicles in cells by direct interaction with different lipid environments.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Lípidos de la Membrana/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Vesículas Citoplasmáticas/química , Aparato de Golgi/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Vesículas Secretoras/metabolismo
18.
Med Sci (Paris) ; 25(5): 483-8, 2009 May.
Artículo en Francés | MEDLINE | ID: mdl-19480829

RESUMEN

A cellular membrane is highly deformable: during the last decade, numerous studies have dissected at the molecular scale how during vesicular transport various proteins could deform a membrane or recognize membrane deformation. We will discuss how the activity of ArfGAP1 and GMAP-210, two proteins involved in vesicular transport, is regulated by membrane curvature thanks to an ALPS motif. Since a membrane is not solely defined by its shape but also by its lipids composition, we will show how others proteins are adapted to other lipid compositions to recognize membrane shape.


Asunto(s)
Transporte Biológico/fisiología , Membrana Celular/ultraestructura , Forma de la Célula/fisiología , Vesículas Transportadoras/fisiología , Secuencias de Aminoácidos , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Fluidez de la Membrana , Fusión de Membrana/fisiología , Lípidos de la Membrana/fisiología , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Proteínas Nucleares/fisiología , Vesículas Transportadoras/ultraestructura
19.
Mol Biol Cell ; 20(3): 859-69, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19109418

RESUMEN

From yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat. Using a reporter fusion approach and in vitro assays, we identified several functional elements in ArfGAP2/3. We show that the Golgi localization of ArfGAP3 depends on both a central basic stretch and a carboxy-amphipathic motif. The basic stretch interacts directly with coatomer, which we found essential for the catalytic activity of ArfGAP3 on Arf1-GTP, whereas the carboxy-amphipathic motif interacts directly with lipid membranes but has minor role in the regulation of ArfGAP3 activity. Our findings indicate that the two types of ArfGAP proteins that reside at the Golgi use a different combination of protein-protein and protein-lipid interactions to promote GTP hydrolysis in Arf1-GTP.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Aparato de Golgi/metabolismo , Compuestos de Aluminio/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antígenos CD4/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Fluoruros/farmacología , Aparato de Golgi/efectos de los fármacos , Células HeLa , Humanos , Liposomas/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
20.
Biochemistry ; 46(7): 1779-90, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17253781

RESUMEN

ArfGAP1 (Arf GTPase activating protein 1) controls the cycling of the COPI coat on Golgi membranes by catalyzing GTP hydrolysis in the small G protein Arf1. ArfGAP1 contains a central motif named ALPS (ArfGAP1 lipid-packing sensor) that adsorbs preferentially onto highly curved membranes. This motif allows coupling of the rate of GTP hydrolysis in Arf1 with membrane curvature induced by the COPI coat. Upon membrane adsorption, the ALPS motif folds into an amphipathic alpha-helix. This helix contrasts from a classical membrane-adsorbing helix in the abundance of S and T residues and the paucity of charged residues in its polar face. We show here that ArfGAP1 contains a second motif with similar physicochemical properties. This motif, ALPS2, also forms an amphipathic alpha-helix at the surface of small vesicles and contributes to the Golgi localization of ArfGAP1 in vivo. Using several quantitative assays, we determined the relative contribution of the two ALPS motifs in the recognition of liposomes of defined curvature and composition. Our results show that ALPS1 is the primary determinant of the interaction of ArfGAP1 with lipid membranes and that ALPS2 reinforces this interaction 40-fold. Furthermore, our results suggest that depending on the engagement of one or two functional ALPS motifs, ArfGAP1 can respond to a wide range of membrane curvature and can adapt to lipid membranes of various acyl chain compositions.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Liposomas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Dicroismo Circular , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...