Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 5(1): 105, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36697714

RESUMEN

Key to the fragment optimisation process within drug design is the need to accurately capture the changes in affinity that are associated with a given set of chemical modifications. Due to the weakly binding nature of fragments, this has proven to be a challenging task, despite recent advancements in leveraging experimental and computational methods. In this work, we evaluate the use of Absolute Binding Free Energy (ABFE) calculations in guiding fragment optimisation decisions, retrospectively calculating binding free energies for 59 ligands across 4 fragment elaboration campaigns. We first demonstrate that ABFEs can be used to accurately rank fragment-sized binders with an overall Spearman's r of 0.89 and a Kendall τ of 0.67, although often deviating from experiment in absolute free energy values with an RMSE of 2.75 kcal/mol. We then also show that in several cases, retrospective fragment optimisation decisions can be supported by the ABFE calculations. Comparing against cheaper endpoint methods, namely Nwat-MM/GBSA, we find that ABFEs offer better ranking power and correlation metrics. Our results indicate that ABFE calculations can usefully guide fragment elaborations to maximise affinity.

2.
Mol Pharmacol ; 68(4): 942-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16027231

RESUMEN

Ionotropic GABA receptors are abundant in both vertebrate and invertebrate nervous systems, where they mediate rapid, mostly inhibitory synaptic transmission. A GABA-gated chloride channel subunit from Drosophila melanogaster [Resistant to Dieldrin (RDL)] has been cloned, functionally expressed, and found to exhibit many aspects of the pharmacology of native, bicuculline-insensitive insect GABA receptors. RDL is the target of the commercially important insecticide fipronil. A point mutation in the channel-lining region of the RDL molecule is known to underlie most cases of resistance to insecticides acting on GABA receptors. RDL is widely distributed throughout the insect nervous system, but the subunit composition of RDL-containing in native receptors is unknown. It is possible that in some instances, RDL coexpresses with glutamate-gated chloride channel subunits. Other ionotropic receptor subunits (LCCH3 and GRD) form GABA-gated cation channels when heterologously expressed. Interest in RDL as a model ligandgated anion channel has been enhanced by the recent discovery of pre-mRNA A-to-I editing, which, together with alternative splicing, adds to the functional diversity of this GABA receptor subunit.


Asunto(s)
Empalme Alternativo , Antiprotozoarios/farmacología , Insecticidas/farmacología , Edición de ARN , Receptores de GABA/genética , Secuencia de Aminoácidos , Animales , Drosophila melanogaster , Resistencia a los Insecticidas , Datos de Secuencia Molecular , ARN Mensajero/genética , Receptores de GABA/efectos de los fármacos , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA