Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Am Chem Soc ; 146(15): 10537-10549, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567991

RESUMEN

The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel ß-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , alfa-Sinucleína/química , Enfermedad de Parkinson/metabolismo , Amiloide/química , Conformación Proteica en Lámina beta
4.
Alzheimers Res Ther ; 16(1): 13, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238842

RESUMEN

BACKGROUND: Amyloid-ß42 (Aß42) aggregation consists of a complex chain of nucleation events producing soluble oligomeric intermediates, which are considered the major neurotoxic agents in Alzheimer's disease (AD). Cerebral lesions in the brain of AD patients start to develop 20 years before symptom onset; however, no preventive strategies, effective treatments, or specific and sensitive diagnostic tests to identify people with early-stage AD are currently available. In addition, the isolation and characterisation of neurotoxic Aß42 oligomers are particularly difficult because of their transient and heterogeneous nature. To overcome this challenge, a rationally designed method generated a single-domain antibody (sdAb), named DesAb-O, targeting Aß42 oligomers. METHODS: We investigated the ability of DesAb-O to selectively detect preformed Aß42 oligomers both in vitro and in cultured neuronal cells, by using dot-blot, ELISA immunoassay and super-resolution STED microscopy, and to counteract the toxicity induced by the oligomers, monitoring their interaction with neuronal membrane and the resulting mitochondrial impairment. We then applied this approach to CSF samples (CSFs) from AD patients as compared to age-matched control subjects. RESULTS: DesAb-O was found to selectively detect synthetic Aß42 oligomers both in vitro and in cultured cells, and to neutralise their associated neuronal dysfunction. DesAb-O can also identify Aß42 oligomers present in the CSFs of AD patients with respect to healthy individuals, and completely prevent cell dysfunction induced by the administration of CSFs to neuronal cells. CONCLUSIONS: Taken together, our data indicate a promising method for the improvement of an early diagnosis of AD and for the generation of novel therapeutic approaches based on sdAbs for the treatment of AD and other devastating neurodegenerative conditions.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Dominio Único , Humanos , Enfermedad de Alzheimer/patología , Anticuerpos de Dominio Único/uso terapéutico , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Ensayo de Inmunoadsorción Enzimática , Encéfalo/metabolismo , Fragmentos de Péptidos/toxicidad
5.
Neural Regen Res ; 18(11): 2332-2342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37282450

RESUMEN

The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.

6.
iScience ; 26(5): 106611, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37128606

RESUMEN

High cholesterol levels are a risk factor for the development of Alzheimer's disease. Experiments investigating the influence of cholesterol on the proteolytic processing of the amyloid precursor protein (APP) by the ß-secretase Bace1 and on their proximity in cells have led to conflicting results. By using a fluorescence bioassay coupled with flow cytometry we found a direct correlation between the increase in membrane cholesterol amount and the degree of APP shedding in living human neuroblastoma cells. Analogue results were obtained for cells overexpressing an APP mutant that cannot be processed by α-secretase, highlighting the major influence of cholesterol enrichment on the cleavage of APP carried out by Bace1. By contrast, the cholesterol content was not correlated with changes in membrane dynamics of APP and Bace1 analyzed with single molecule tracking, indicating that the effect of cholesterol enrichment on APP processing by Bace1 is uncoupled from changes in their lateral diffusion.

7.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175681

RESUMEN

The aberrant aggregation of specific peptides and proteins is the common feature of a range of more than 50 human pathologies, collectively referred to as protein misfolding diseases [...].


Asunto(s)
Agregado de Proteínas , Deficiencias en la Proteostasis , Humanos , Pliegue de Proteína , Proteínas , Péptidos/metabolismo
8.
Ann Med ; 55(1): 72-88, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36495262

RESUMEN

Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-ß-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-ß structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-ß structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología
9.
FEBS J ; 290(1): 112-133, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35851748

RESUMEN

Soluble oligomers arising from the aggregation of the amyloid beta peptide (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Prefibrillar oligomers of the 42-residue form of Aß (Aß42 O) show membrane-binding capacity and trigger the disruption of Ca2+ homeostasis, a causative event in neuron degeneration. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the involvement of sphingosine 1-phosphate (S1P) signalling pathway in Ca2+ homeostasis in living neurons exposed to Aß42 O. We show that both exogenous and endogenous S1P rescued neuronal Ca2+ dyshomeostasis induced by toxic Aß42 O in primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Further analysis revealed a strong neuroprotective effect of S1P1 and S1P4 receptors, and to a lower extent of S1P3 and S1P5 receptors, which activate the Gi -dependent signalling pathways, thus resulting in the endocytic internalization of the extrasynaptic GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). Notably, the S1P beneficial effect can be sustained over time by sphingosine kinase-1 overexpression, thus counteracting the down-regulation of the S1P signalling induced by Aß42 O. Our findings disclose underlying mechanisms of S1P neuronal protection against harmful Aß42 O, suggesting that S1P and its signalling axis can be considered promising targets for therapeutic approaches for AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratas , Humanos , Animales , Receptores de N-Metil-D-Aspartato/genética , Péptidos beta-Amiloides/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo
10.
Protein Sci ; 31(12): e4509, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371546

RESUMEN

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are associated with deposition of cytosolic inclusion bodies of TAR DNA-binding protein 43 (TDP-43) in brain and motor neurons. We induced phase separation of purified full-length TDP-43 devoid of large tags using a solution-jump method, and monitored it with an array of biophysical techniques. The tetramethylrhodamine-5-maleimide- or Alexa488-labeled protein formed rapidly (<1 min) apparently round, homogeneous and 0.5-1.0 µm wide assemblies, when imaged using confocal fluorescence, bright-field, and stimulated emission depletion microscopy. The assemblies, however, had limited internal diffusion, as assessed with fluorescence recovery after photobleaching, and did not coalesce, but rather clustered into irregular bunches, unlike those formed by the C-terminal domain. They were enriched with α-helical structure, with minor contributions of ß-sheet/random structure, had a red-shifted tryptophan fluorescence and did not bind thioflavin T. By monitoring with turbidimetry both the formation of the spherical species and their further clustering under different experimental conditions, we carried out a multiparametric analysis of the two phenomena. In particular, both processes were found to be promoted by high protein concentrations, salts, crowding agents, weakly by reducing agents, as the pH approached a value of 6.0 from either side (corresponding to the TDP-43 isoionic point), and as the temperature approached a value of 31°C from either side. Important differences were found with respect to the TDP-43 C-terminal domain. Our multiparametric results also provide explanations to some of the solubility data obtained on full-length TDP-43 that were difficult to explain following the multiparametric analysis acquired on the C-terminal domain.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Degeneración Lobar Frontotemporal/metabolismo , Proteínas de Unión al ADN/química , Cuerpos de Inclusión , Encéfalo/metabolismo
11.
Bioessays ; 44(11): e2200086, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104212

RESUMEN

Amyloid fibril formation plays a central role in the pathogenesis of a number of neurodegenerative diseases, including Alzheimer and Parkinson diseases. Transient prefibrillar oligomers forming during the aggregation process, exhibiting a small size and a large hydrophobic surface, can aberrantly interact with a number of molecular targets on neurons, including the lipid bilayer of plasma membranes, resulting in a fatal outcome for the cells. By contrast, the mature fibrils, despite presenting generally a high hydrophobic surface, are endowed with a low diffusion rate and poorly penetrate the interior of the lipid bilayer. However, increasing evidence shows that both intracellular α-synuclein fibrils, as well and as extracellular amyloid-ß and ß2-microglobulin fibrils, can release oligomers over time that quickly diffuse to reach the membrane of the neighboring cells. The persistent leakage of harmful oligomers from fibrils triggers an ongoing cascade of events resulting in a sustained injury to neurons and glia and also provides aggregates with the ability to cross biological membranes and diffuse between cells or cellular compartments.


Asunto(s)
Amiloide , Enfermedad de Parkinson , Humanos , Amiloide/química , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Membrana Dobles de Lípidos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Parkinson/metabolismo
12.
Sci Adv ; 8(30): eabm6376, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895809

RESUMEN

A number of neurodegenerative conditions are associated with the formation of cytosolic inclusions of TDP-43 within neurons. We expressed full-length TDP-43 in a motoneuron/neuroblastoma hybrid cell line (NSC-34) and exploited the high-resolution power of stimulated emission depletion microscopy to monitor the changes of nuclear and cytoplasmic TDP-43 levels and the formation of various size classes of cytoplasmic TDP-43 aggregates with time. Concomitantly, we monitored oxidative stress and mitochondrial impairment using the MitoSOX and MTT reduction assays, respectively. Using a quantitative biology approach, we attributed neuronal dysfunction associated with cytoplasmic deposition component to the formation of the largest inclusions, independently of stress granules. This is in contrast to other neurodegenerative diseases where toxicity is attributed to small oligomers. Using specific inhibitors, markers, and electron microscopy, the proteasome and autophagy were found to target mainly the largest deleterious inclusions, but their efficiency soon decreases without full recovery of neuronal viability.


Asunto(s)
Proteínas de Unión al ADN , Cuerpos de Inclusión , Enfermedades Neurodegenerativas , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Cuerpos de Inclusión/metabolismo , Ratones , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo
13.
Cell Mol Life Sci ; 79(3): 174, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244787

RESUMEN

Protein misfolding is a general hallmark of protein deposition diseases, such as Alzheimer's disease or Parkinson's disease, in which different types of aggregated species (oligomers, protofibrils and fibrils) are generated by the cells. Despite widespread interest, the relationship between oligomers and fibrils in the aggregation process and spreading remains elusive. A large variety of experimental evidences supported the idea that soluble oligomeric species of different proteins might be more toxic than the larger fibrillar forms. Furthermore, the lack of correlation between the presence of the typical pathological inclusions and disease sustained this debate. However, recent data show that the ß-sheet core of the α-Synuclein (αSyn) fibrils is unable to establish persistent interactions with the lipid bilayers, but they can release oligomeric species responsible for an immediate dysfunction of the recipient neurons. Reversibly, such oligomeric species could also contribute to pathogenesis via neuron-to-neuron spreading by their direct cell-to-cell transfer or by generating new fibrils, following their neuronal uptake. In this Review, we discuss the various mechanisms of cellular dysfunction caused by αSyn, including oligomer toxicity, fibril toxicity and fibril spreading.


Asunto(s)
Amiloide/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína/metabolismo , Amiloide/toxicidad , Humanos , Cuerpos de Lewy/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Pliegue de Proteína , Sinucleinopatías/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
14.
Front Neurosci ; 15: 680026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220435

RESUMEN

The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-ß peptide (Aß) and of α-synuclein (αS), which are associated with Alzheimer's and Parkinson's diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aß and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aß and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer's and Parkinson's diseases.

15.
Life (Basel) ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064766

RESUMEN

α-Synuclein (αS) is an intrinsically disordered and highly dynamic protein involved in dopamine release at presynaptic terminals. The abnormal aggregation of αS as mature fibrils into intraneuronal inclusion bodies is directly linked to Parkinson's disease. Increasing experimental evidence suggests that soluble oligomers formed early during the aggregation process are the most cytotoxic forms of αS. This study investigated the uptake by neuronal cells of pathologically relevant αS oligomers and fibrils exploiting a range of conformation-sensitive antibodies, and the super-resolution stimulated emission depletion (STED) microscopy. We found that prefibrillar oligomers promptly penetrate neuronal membranes, thus resulting in cell dysfunction. By contrast, fibril docking to the phospholipid bilayer is accompanied by αS conformational changes with a progressive release of A11-reactive oligomers, which can enter into the neurons and trigger cell impairment. Our data provide important evidence on the role of αS fibrils as a source of harmful oligomers, which resemble the intermediate conformers formed de novo during aggregation, underling the dynamic and reversible nature of protein aggregates responsible for α-synucleinopathies.

16.
Nat Commun ; 12(1): 1814, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753734

RESUMEN

The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-ß structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.


Asunto(s)
Amiloide/metabolismo , Cuerpos de Inclusión/metabolismo , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Animales , Calcio/metabolismo , Línea Celular Tumoral , Células Cultivadas , Humanos , Cinética , Microscopía Confocal , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas , Multimerización de Proteína , Ratas Sprague-Dawley , alfa-Sinucleína/química
17.
Curr Alzheimer Res ; 17(8): 722-734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33167834

RESUMEN

BACKGROUND: The pathogenesis of Alzheimer's disease (AD) is not directly caused by the presence of senile plaques but rather by the detrimental effects exerted on neuronal cells by toxic soluble oligomers. Such species are formed early during the aggregation process of the Aß1-42 peptide or can be released from mature fibrils. Nowadays, efficient tools for an early diagnosis, as well as pharmaceutical treatments targeting the harmful agents in samples of AD patients, are still missing. OBJECTIVE: By integrating in vitro immunochemical assay with in vivo neuronal models of toxicity, we aim to understand and target the principles that drive toxicity in AD. METHODS: We evaluated the specificity and sensitivity of A11 and OC conformational antibodies to target a range of pathologically relevant amyloid conformers and rescue their cytotoxic effects in neuronal culture models using a number of cellular readouts. RESULTS: We demonstrated the peculiar ability of conformational antibodies to label pathologically relevant Aß1-42 oligomers and fibrils and to prevent their detrimental effects on neuronal cells. CONCLUSION: Our results substantially improve our knowledge on the role of toxic assemblies in neurodegenerative diseases, thus suggesting new and more effective diagnostic and therapeutic tools for AD.


Asunto(s)
Anticuerpos/uso terapéutico , Placa Amiloide/inmunología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Amiloide/inmunología , Péptidos beta-Amiloides/inmunología , Animales , Anticuerpos/inmunología , Caspasa 3/metabolismo , Humanos , Técnicas In Vitro , Microscopía Confocal , Neuronas/inmunología , Fragmentos de Péptidos/inmunología , Placa Amiloide/terapia , Conformación Proteica , Ratas
18.
Commun Biol ; 3(1): 435, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792544

RESUMEN

The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-ß (Aß) in Alzheimer's disease and α-synuclein (αS) in Parkinson's disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aß and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases.


Asunto(s)
Membrana Celular/metabolismo , Colestanos/farmacología , Pliegue de Proteína , Multimerización de Proteína , Espermina/análogos & derivados , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Fenómenos Biofísicos/efectos de los fármacos , Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/toxicidad , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/toxicidad , Humanos , Pliegue de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Espermina/farmacología , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad
19.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703381

RESUMEN

Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as -F and -NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as -OH, -OCH3, and -CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.


Asunto(s)
Amiloide/química , Proteínas Aviares/química , Derivados del Benceno/química , Muramidasa/química , Agregado de Proteínas , Animales , Línea Celular Tumoral , Pollos , Humanos
20.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357627

RESUMEN

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are progressive and fatal neurodegenerative disorders showing mislocalization and cytosolic accumulation of TDP-43 inclusions in the central nervous system. The decrease in the efficiency of the clearance systems in aging, as well as the presence of genetic mutations of proteins associated with cellular proteostasis in the familial forms of TDP-43 proteinopathies, suggest that a failure of these protein degradation systems is a key factor in the aetiology of TDP-43 associated disorders. Here we show that the internalization of human pre-formed TDP-43 aggregates in the murine neuroblastoma N2a cells promptly resulted in their ubiquitination and hyperphosphorylation by endogenous machineries, mimicking the post-translational modifications observed in patients. Moreover, our data identify mitochondria as the main responsible sites for the alteration of calcium homeostasis induced by TDP-43 aggregates, which, in turn, stimulates an increase in reactive oxygen species and, finally, caspase activation. The inhibition of TDP-43 proteostasis in the presence of selective inhibitors against the proteasome and macroautophagy systems revealed that these two systems are both severely involved in TDP-43 accumulation and have a strong influence on each other in neurodegenerative disorders associated with TDP-43.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteostasis , Animales , Autofagia , Calcio/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...