Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23340, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163125

RESUMEN

In Mild Cognitive Impairment (MCI), the study of brain metabolism, provided by 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) can be integrated with brain perfusion through pseudo-Continuous Arterial Spin Labeling Magnetic Resonance sequences (MR pCASL). Cortical hypometabolism identification generally relies on wide control group datasets; pCASL control groups are instead not publicly available yet, due to lack of standardization in the acquisition parameters. This study presents a quantitative pipeline to be applied to PET and pCASL data to coherently analyze metabolism and perfusion inside 16 matching cortical regions of interest (ROIs) derived from the AAL3 atlas. The PET line is tuned on 36 MCI patients and 107 healthy control subjects, to agree in identifying hypometabolic regions with clinical reference methods (visual analysis supported by a vendor tool and Statistical Parametric Mapping, SPM, with two parametrizations here identified as SPM-A and SPM-B). The analysis was conducted for each ROI separately. The proposed PET analysis pipeline obtained accuracy 78 % and Cohen's к 60 % vs visual analysis, accuracy 79 % and Cohen's к 58 % vs SPM-A, accuracy 77 % and Cohen's к 54 % vs SPM-B. Cohen's к resulted not significantly different from SPM-A and SPM-B Cohen's к when assuming visual analysis as reference method (p-value 0.61 and 0.31 respectively). Considering SPM-A as reference method, Cohen's к is not significantly different from SPM-B Cohen's к as well (p-value = 1.00). The complete PET-pCASL pipeline was then preliminarily applied on 5 MCI patients and metabolism-perfusion regional correlations were assessed. The proposed approach can be considered as a promising tool for PET-pCASL joint analyses in MCI, even in the absence of a pCASL control group, to perform metabolism-perfusion regional correlation studies, and to assess and compare perfusion in hypometabolic or normo-metabolic areas.

2.
Diagnostics (Basel) ; 13(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37046494

RESUMEN

Gastric cancer represents one of the most common oncological causes of death worldwide. In order to treat patients in the best possible way, the staging of gastric cancer should be accurate. In this regard, endoscopy ultrasound (EUS) has been considered the reference standard for tumor (T) and nodal (N) statuses in recent decades. However, thanks to technological improvements, computed tomography (CT) has gained an important role, not only in the assessment of distant metastases (M status) but also in T and N staging. In addition, magnetic resonance imaging (MRI) can contribute to the detection and staging of primary gastric tumors thanks to its excellent soft tissue contrast and multiple imaging sequences without radiation-related risks. In addition, MRI can help with the detection of liver metastases, especially small lesions. Finally, positron emission tomography (PET) is still considered a useful diagnostic tool for the staging of gastric cancer patients, with a focus on nodal metastases and peritoneal carcinomatosis. In addition, it may play a role in the treatment of gastric cancer in the coming years thanks to the introduction of new labeling peptides. This review aims to summarize the most common advantages and pitfalls of EUS, CT, MRI and PET in the TNM staging of gastric cancer patients.

3.
J Neurosci Res ; 101(2): 199-216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36300592

RESUMEN

Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.


Asunto(s)
Encéfalo , Neoplasias , Humanos
4.
Neurotherapeutics ; 19(6): 1942-1950, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36129603

RESUMEN

Hypothermia is a promising therapeutic strategy for severe vasospasm and other types of non-thrombotic cerebral ischemia, but its clinical application is limited by significant systemic side effects. We aimed to develop an intraventricular device for the controlled cooling of the cerebrospinal fluid, to produce a targeted hypothermia in the affected cerebral hemisphere with a minimal effect on systemic temperature. An intraventricular cooling device (acronym: V-COOL) was developed by in silico modelling, in vitro testing, and in vivo proof-of-concept application in healthy Wistar rats (n = 42). Cerebral cortical temperature, rectal temperature, and intracranial pressure were monitored at increasing flow rate (0.2 to 0.8 mL/min) and duration of application (10 to 60 min). Survival, neurological outcome, and MRI volumetric analysis of the ventricular system were assessed during the first 24 h. The V-COOL prototyping was designed to minimize extra-cranial heat transfer and intra-cranial pressure load. In vivo application of the V-COOL device produced a flow rate-dependent decrease in cerebral cortical temperature, without affecting systemic temperature. The target degree of cerebral cooling (- 3.0 °C) was obtained in 4.48 min at the flow rate of 0.4 mL/min, without significant changes in intracranial pressure. Survival and neurological outcome at 24 h showed no significant difference compared to sham-treated rats. MRI study showed a transient dilation of the ventricular system (+ 38%) in a subset of animals. The V-COOL technology provides an effective, rapid, selective, and safe cerebral cooling to a clinically relevant degree of - 3.0 °C.


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Ratas , Temperatura Corporal , Ratas Wistar , Bioingeniería , Encéfalo
5.
Diagnostics (Basel) ; 12(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626344

RESUMEN

Radiology plays a crucial role for the diagnosis and management of COVID-19 patients during the different stages of the disease, allowing for early detection of manifestations and complications of COVID-19 in the different organs. Lungs are the most common organs involved by SARS-CoV-2 and chest computed tomography (CT) represents a reliable imaging-based tool in acute, subacute, and chronic settings for diagnosis, prognosis, and management of lung disease and the evaluation of acute and chronic complications. Cardiac involvement can be evaluated by using cardiac computed tomography angiography (CCTA), considered as the best choice to solve the differential diagnosis between the most common cardiac conditions: acute coronary syndrome, myocarditis, and cardiac dysrhythmia. By using compressive ultrasound it's possible to study the peripheral arteries and veins and to exclude the deep vein thrombosis, directly linked to the onset of pulmonary embolism. Moreover, CT and especially MRI can help to evaluate the gastrointestinal involvement and assess hepatic function, pancreas involvement, and exclude causes of lymphocytopenia, thrombocytopenia, and leukopenia, typical of COVID-19 patients. Finally, radiology plays a crucial role in the early identification of renal damage in COVID-19 patients, by using both CT and US. This narrative review aims to provide a comprehensive radiological analysis of commonly involved organs in patients with COVID-19 disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...