Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Toxins (Basel) ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38922144

RESUMEN

Mycotoxins, secondary metabolites synthesized by various filamentous fungi genera such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria, are potent toxic compounds. Their production is contingent upon specific environmental conditions during fungal growth. Arising as byproducts of fungal metabolic processes, mycotoxins exhibit significant toxicity, posing risks of acute or chronic health complications. Recognized as highly hazardous food contaminants, mycotoxins present a pervasive threat throughout the agricultural and food processing continuum, from plant cultivation to post-harvest stages. The imperative to adhere to principles of good agricultural and industrial practice is underscored to mitigate the risk of mycotoxin contamination in food production. In the domain of food safety, the rapid and efficient detection of mycotoxins holds paramount significance. This paper delineates conventional and commercial methodologies for mycotoxin detection in ensuring food safety, encompassing techniques like liquid chromatography, immunoassays, and test strips, with a significant emphasis on the role of electrochemiluminescence (ECL) biosensors, which are known for their high sensitivity and specificity. These are categorized into antibody-, and aptamer-based, as well as molecular imprinting methods. This paper examines the latest advancements in biosensors for mycotoxin testing, with a particular focus on their amplification strategies and operating mechanisms.


Asunto(s)
Técnicas Biosensibles , Contaminación de Alimentos , Inocuidad de los Alimentos , Micotoxinas , Micotoxinas/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Humanos , Animales
2.
PLoS One ; 19(3): e0300717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517871

RESUMEN

Machine learning (ML) algorithms can handle complex genomic data and identify predictive patterns that may not be apparent through traditional statistical methods. They become popular tools for medical applications including prediction, diagnosis or treatment of complex diseases like rheumatoid arthritis (RA). RA is an autoimmune disease in which genetic factors play a major role. Among the most important genetic factors predisposing to the development of this disease and serving as genetic markers are HLA-DRB and non-HLA genes single nucleotide polymorphisms (SNPs). Another marker of RA is the presence of anticitrullinated peptide antibodies (ACPA) which is correlated with severity of RA. We use genetic data of SNPs in four non-HLA genes (PTPN22, STAT4, TRAF1, CD40 and PADI4) to predict the occurrence of ACPA positive RA in the Polish population. This work is a comprehensive comparative analysis, wherein we assess and juxtapose various ML classifiers. Our evaluation encompasses a range of models, including logistic regression, k-nearest neighbors, naïve Bayes, decision tree, boosted trees, multilayer perceptron, and support vector machines. The top-performing models demonstrated closely matched levels of accuracy, each distinguished by its particular strengths. Among these, we highly recommend the use of a decision tree as the foremost choice, given its exceptional performance and interpretability. The sensitivity and specificity of the ML models is about 70% that are satisfying. In addition, we introduce a novel feature importance estimation method characterized by its transparent interpretability and global optimality. This method allows us to thoroughly explore all conceivable combinations of polymorphisms, enabling us to pinpoint those possessing the highest predictive power. Taken together, these findings suggest that non-HLA SNPs allow to determine the group of individuals more prone to develop RA rheumatoid arthritis and further implement more precise preventive approach.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Humanos , Autoanticuerpos/genética , Teorema de Bayes , Predisposición Genética a la Enfermedad , Cadenas HLA-DRB1/genética , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
3.
Cancers (Basel) ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38473405

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. The interplay between O-GlcNAcylation and phosphorylation is critical to control signaling pathways and maintain cellular homeostasis. The addition of O-GlcNAc moieties to target proteins is catalyzed by O-linked N-acetylglucosamine transferase (OGT). Of the three splice variants of OGT described, one is destined for the mitochondria (mOGT). Although the effects of O-GlcNAcylation on the biology of normal and cancer cells are well documented, the role of mOGT remains poorly understood. In this manuscript, the effects of mOGT on mitochondrial protein phosphorylation, electron transport chain (ETC) complex activity, and the expression of VDAC porins were investigated. We performed studies using normal and breast cancer cells with upregulated mOGT or its catalytically inactive mutant. Proteomic approaches included the isolation of O-GlcNAc-modified proteins of the electron transport chain, followed by their analysis using mass spectrometry. We found that mitochondrial OGT regulates the activity of complexes I-V of the respiratory chain and identified a group of 19 ETC components as mOGT substrates in mammary cells. Furthermore, we observed that the upregulation of mOGT inhibited the interaction of VDAC1 with hexokinase II. Our results suggest that the deregulation of mOGT reprograms cellular energy metabolism via interaction with and O-GlcNAcylation of proteins involved in ATP production in mitochondria and its exchange between mitochondria and the cytosol.

4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894959

RESUMEN

The Lamiaceae is one of the most important families in the production of essential oils known to have a wide spectrum of biological activity. Recent research has highlighted the dermatological capabilities of various Lamiaceae essential oils, which appear to offer potential in free radical scavenging and anti-inflammatory activity. Some have also been extensively studied for their tissue remodeling and wound-healing, anti-aging, anti-melanogenic, and anti-cancer properties. Certain Lamiaceae essential oils are promising as novel therapeutic alternatives for skin disorders. This potential has seen substantial efforts dedicated to the development of modern formulations based on nanotechnology, enabling the topical application of various Lamiaceae essential oils. This review provides a comprehensive summary of the utilization of various essential oils from the Lamiaceae family over the past decade. It offers an overview of the current state of knowledge concerning the use of these oils as antioxidants, anti-inflammatory agents, wound-healers, anti-aging agents, anti-melanogenic agents, and anticancer agents, both alone and in combination with nanoparticles. Additionally, the review explores their potential applicability in patents regarding skin diseases.


Asunto(s)
Investigación Biomédica , Lamiaceae , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Nanotecnología
5.
PLoS One ; 18(10): e0293280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878647

RESUMEN

Urolithiasis is one of the most common urological diseases worldwide with an unclear aetiology. However, a growing body of evidence suggests the potential role of molecular disturbances of the inflammation as well as oxidative and nitrative stresses, in the pathogenesis of urolithiasis. Therefore, we aimed to detect the potential association between six selected single-nucleotide polymorphisms (SNPs) and the development of nephrolithiasis. Moreover, we verified the association of urolithiasis development and mRNA expression of IL-6, IL-8, SOD2, and NOS2 in peripheral blood mononuclear cells (PBMCs). Total genomic DNA and mRNA were isolated from the peripheral blood of 112 patients with urolithiasis and 114 healthy subjects. Using Taq-Man® probes, we genotyped the following SNPs: rs1800797 and rs2069845 in IL-6, rs2227307 in IL-8, rs4880 in SOD2, rs2297518 and rs2779249 in NOS2. In turn, the evaluation of mRNA expression was performed using real-time PCR and 2-ΔCt methods. We found that the C/T genotype of the c.47 T>C-SOD2 SNP increased the frequency of urolithiasis occurrence whereas the T/T homozygote of the same polymorphism decreased the risk of urolithiasis development in the Polish population. Moreover, our study confirmed that patients with urolithiasis were characterised by decreased IL-6, IL-8, and SOD2 mRNA expression levels compared to the controls. In conclusion, our results suggest that polymorphic variants and changes in mRNA expression of IL-6, IL8, SOD2, and NOS2 may be involved in the pathophysiology of urolithiasis.


Asunto(s)
Cálculos Renales , Urolitiasis , Humanos , Interleucina-6/genética , Frecuencia de los Genes , Leucocitos Mononucleares , Interleucina-8/genética , Genotipo , Polimorfismo de Nucleótido Simple , Urolitiasis/genética , Estrés Oxidativo/genética , ARN Mensajero/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles
6.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833905

RESUMEN

T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 µM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.


Asunto(s)
Micotoxinas , Toxina T-2 , Animales , Humanos , Micotoxinas/toxicidad , Micotoxinas/metabolismo , Toxina T-2/toxicidad , Toxina T-2/metabolismo , Línea Celular , Daño del ADN , ADN/metabolismo , Fibroblastos/metabolismo , ARN Mensajero/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
7.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834200

RESUMEN

One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.


Asunto(s)
Trastorno Depresivo Mayor , Polimorfismo de Nucleótido Simple , Humanos , Trastorno Depresivo Mayor/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Estrés Oxidativo/genética
8.
Molecules ; 28(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764392

RESUMEN

Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ocratoxinas , Animales , Humanos , Ocratoxinas/toxicidad , Bebidas , Alimentos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
9.
Sci Rep ; 13(1): 14491, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660159

RESUMEN

Bladder cancer (BC) is a severe health problem of the genitourinary system and is characterised by a high risk of recurrence. According to the recent GLOBOCAN report, bladder cancer accounts for 3% of diagnosed cancers in the world, taking 10th place on the list of the most common cancers. Despite numerous studies, the full mechanism of BC development remains unknown. Nevertheless, precious results suggest a crucial role of oxidative stress in the development of BC. Therefore, this study explores whether the c. 47 C > T (rs4880)-SOD2, (c. 1823 C > T (rs2297518) and g.-1026 C > A (rs2779249)-NOS2(iNOS) polymorphisms are associated with BC occurrence and whether the bladder carcinogenesis induces changes in SOD2 and NOS2 expression and methylation status in peripheral blood mononuclear cells (PBMCs). In this aim, the TaqMan SNP genotyping assay, TaqMan Gene Expression Assay, and methylation-sensitive high-resolution melting techniques were used to genotype profiling and evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that heterozygote of the g.-1026 C > A SNP was associated with a decreased risk of BC. Moreover, we detected that BC development influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs. Concluding, our results confirmed that oxidative stress, especially NOS2 polymorphisms and changes in the expression and methylation of the promoters of SOD2 and NOS2 are involved in the cancer transformation initiation of the cell urinary bladder.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Carcinogénesis , Leucocitos Mononucleares , Óxido Nítrico Sintasa de Tipo II , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética
10.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047238

RESUMEN

Bladder cancer (BC) is the 10th most common form of cancer globally, but its complete aetiology is still unknown. Nevertheless, there is evidence that chronic inflammation plays a role in the development and progression of BC. Therefore, the presented study aimed to detect a potential association between selected single nucleotide polymorphisms (SNPs)-rs1800797 and rs2069845 in IL-6 and rs2227307 in IL-8-and BC development, as well as to identify the impact of BC on the level of expression and methylation of IL-6 and IL-8 promoters in PBMCs with the use of the TaqMan SNP genotyping assay, TaqMan gene expression assay, and methylation-sensitive high-resolution melting techniques. We did not find any association between the genotypes and combined genotypes of all studied polymorphisms and the occurrence of BC. However, we found that BC patients were characterised by decreased IL-6 and IL-8 mRNA expression levels compared to the controls. Additionally, the methylation status of the IL-6 promoter was higher in controls than in BC patients. Our findings suggest that inflammation may be involved in the development and progression of BC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Enfermedades Urológicas , Humanos , Metilación , Interleucina-6/genética , Interleucina-8/genética , Neoplasias de la Vejiga Urinaria/genética , Polimorfismo de Nucleótido Simple , Inflamación , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad
11.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903658

RESUMEN

T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.


Asunto(s)
Micotoxinas , Toxina T-2 , Humanos , Línea Celular , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Micotoxinas/metabolismo , NADH Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Toxina T-2/metabolismo
12.
Healthcare (Basel) ; 11(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36673610

RESUMEN

Healthcare waste (HCW) is generated in different healthcare facilities (HCFs), such as hospitals, laboratories, veterinary clinics, research centres and nursing homes. It has been assessed that the majority of medical waste does not pose a risk to humans. It is estimated that 15% of the total amount of produced HCW is hazardous and can be infectious, toxic or radioactive. Hazardous waste is a special type of waste which, if not properly treated, can pose a risk to human health and to the environment. HCW contains potentially harmful microorganisms that can be spread among healthcare personnel, hospital patients and the general public, causing serious illnesses. Healthcare personnel are the specialists especially exposed to this risk. The most common medical procedure, which pose the highest risk, is injection (i.e, intramuscular, subcutaneous, intravenous, taking blood samples). The World Health Organization (WHO) estimates that around 16 billion injections are administered worldwide each year. However, if safety precautions are not followed, and needles and syringes are not properly disposed of, the risk of sharps injuries increases among medical staff, waste handlers and waste collectors. What is more, sharps injuries increase the risk of human immunodeficiency virus (HIV), hepatitis B and C viruses (HBV/HCV), tuberculosis (TB), diphtheria, malaria, syphilis, brucellosis and other transmissions. Disposing of medical waste in a landfill without segregation and processing will result in the entry of harmful microorganisms, chemicals or pharmaceuticals into soil and groundwater, causing their contamination. Open burning or incinerator malfunctioning will result in the emission of toxic substances, such as dioxins and furans, into the air. In order to reduce the negative impact of medical waste, waste management principles should be formulated. To minimize health risks, it is also important to build awareness among health professionals and the general public through various communication and educational methods. The aim of this paper is to present a general overwiev of medical waste, its categories, the principles of its management and the risks to human health and the environment resulting from inappropriate waste management.

13.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560126

RESUMEN

Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the "gold standard" for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática/métodos , Reacción en Cadena de la Polimerasa
14.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012250

RESUMEN

The preclinical research conducted so far suggest that depression development may be influenced by the inflammatory pathways both at the periphery and within the central nervous system. Furthermore, inflammation is considered to be strongly connected with antidepressant treatment resistance. Thus, this study explores whether the chronic mild stress (CMS) procedure and agomelatine treatment induce changes in TGFA, TGFB, IRF1, PTGS2 and IKBKB expression and methylation status in peripheral blood mononuclear cells (PBMCs) and in the brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or agomelatine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that both CMS and antidepressant agomelatine treatment influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs and the brain. What is more, the present study showed that response to either stress stimuli or agomelatine differed between brain structures. Concluding, our results indicate that TGFA, TGFB, PTGS2, IRF1 and IKBKB could be associated with depression and its treatment.


Asunto(s)
Acetamidas , Encéfalo , Leucocitos Mononucleares , Naftalenos , Acetamidas/farmacología , Animales , Antidepresivos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Quinasa I-kappa B/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Naftalenos/farmacología , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Estrés Psicológico
15.
Nutrients ; 14(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807941

RESUMEN

Hypovitaminosis D is a serious public health problem, representing an independent factor in mortality among the general population. Vitamin D deficiency may affect up to one billion people worldwide. Recently, the potential association between vitamin D levels and stroke has gained increasing attention. Many studies suggest that maintaining normal serum vitamin D levels is associated with improvement of the cardiovascular system and a reduction in stroke risk. As a neurosteroid, vitamin D influences brain development and function and immunomodulation and affects brain neuroplasticity. It supports many processes that maintain homeostasis in the body. As stroke is the second most common cause of death worldwide, more studies are needed to confirm the positive effects of vitamin D supplementation, its dosage at different stages of the disease, method of determination, and effect on stroke onset and recovery. Many studies on stroke survivors indicate that serum vitamin D levels only offer insignificant benefits and are not beneficial to recovery. This review article aims to highlight recent publications that have examined the potential of vitamin D supplementation to improve rehabilitation outcomes in stroke survivors. Particular attention has been paid to stroke prevention.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Deficiencia de Vitamina D , Suplementos Dietéticos , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/prevención & control , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas/uso terapéutico
16.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683019

RESUMEN

Proteomic analyses based on mass spectrometry provide a powerful tool for the simultaneous identification of proteins and their signatures. Disorders detection at the molecular level delivers an immense impact for a better understanding of the pathogenesis and etiology of various diseases. Acute coronary syndrome (ACS) refers to a group of heart diseases generally associated with rupture of an atherosclerotic plaque and partial or complete thrombotic obstruction of the blood flow in the infarct-related coronary artery. The essential role in the pathogenesis of ACS is related to the abnormal, pathological activation of blood platelets. The multifactorial and complex character of ACS indicates the need to explain the molecular mechanisms responsible for thrombosis. In our study, we performed screening and comparative analysis of platelet proteome from ACS patients and healthy donors. Two-dimensional fluorescence difference gel electrophoresis and nanoscale liquid chromatography coupled to tandem mass spectrometry showed altered expressions of six proteins (i.e., vinculin, transgelin-2, fibrinogen ß and γ chains, apolipoprotein a1, and tubulin ß), with the overlapping increased expression at the mRNA level for transgelin-2. Dysregulation in protein expression identified in our study may be associated with an increased risk of thrombotic events, correlated with a higher aggregability of blood platelets and induced shape change, thus explaining the phenomenon of the hyperreactivity of blood platelets in ACS.


Asunto(s)
Síndrome Coronario Agudo , Trombosis , Síndrome Coronario Agudo/metabolismo , Plaquetas/metabolismo , Humanos , Proteínas de Microfilamentos , Proteínas Musculares , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem , Trombosis/metabolismo , Transcriptoma
17.
Sci Rep ; 12(1): 10603, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732787

RESUMEN

Multiple sclerosis (MS) is a neurodegenerative disease characterized by a variable clinical course and diverse pathophysiology, including nitrative and oxidative stresses as well as inflammation. We aimed to detect the potential association between five selected single-nucleotide polymorphisms (SNPs) in genes encoding nitric oxide synthetases as well as antioxidant enzymes and the development of MS in a Polish population. Genomic DNA was isolated from peripheral blood collected from 142 MS patients and 140 controls. Using Taq-Man® probes, we genotyped the following SNPs: rs1879417 in NOS1, and rs2297518 in NOS2 as well as rs4880 in SOD2, rs7943316 in CAT, rs713041 in GPX4. In the case of rs2297518, the C/C genotype and C allele SNP were associated with an enhanced occurrence of MS, while the C/T, T/T genotypes, and T allele of the same polymorphism reduced this risk. Moreover, the C/C homozygote and C allele of the rs4880 SNP reduced MS risk, while the T allele increased the risk. In addition, the A/T heterozygote of rs7943316 polymorphism was associated with an increased risk of MS occurrence. We also detected that the C/C genotype and C allele of rs713041 decreased the risk of MS, whereas the T/T genotype and T allele increased this risk. In conclusion, the results of our study suggest some links between polymorphic variability in the nitrative/oxidative stress-related genes and the risk of MS development in the Polish population.


Asunto(s)
Esclerosis Múltiple , Enfermedades Neurodegenerativas , Antioxidantes , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Esclerosis Múltiple/genética , Óxido Nítrico , Óxido Nítrico Sintasa/genética , Polimorfismo de Nucleótido Simple
18.
Biology (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35625372

RESUMEN

The pathological conditions caused by blood platelet activation constitute a fundamental core in the pathogenesis of Acute Coronary Syndrome (ACS). The hyperactivity of platelets in ACS is well-documented, but there is still little research into the molecular basis of phenotypic changes in platelet functionality. To expand the knowledge of this phenomenon, we analyzed the disturbances in the expression of several key platelet receptors and the aspect of regulating potential abnormalities. Platelet surface receptors are responsible for maintaining the hemostatic balance, platelet interaction with immune cells, and support of the coagulation cascade leading to occlusion of the vessel lumen. Due to their prominent role, platelet receptors constitute a major target in pharmacological treatment. Our work aimed to identify the molecular alteration of platelet surface receptors, which showed augmented mRNA expression of P2Y12, GP1BB, ITGA2B, and ITGB3 and increased protein concentrations of P2Y12 and GP IIb/IIIa in ACS. The upregulation of the P2Y12 level was also confirmed by confocal and cytometric visualization. Furthermore, we evaluated the expression of two microRNAs: miR-223-3p and miR-126-3p, which were suggested to regulate platelet P2Y12 expression. Results of our study present new insight into the molecular background of ACS.

19.
J Clin Med ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566599

RESUMEN

Stroke as the most frequent cause of disability is a challenge for the healthcare system as well as an important socio-economic issue. Therefore, there are currently a lot of studies dedicated to stroke recovery. Stroke recovery processes include angiogenesis and neuroplasticity and advances in neuroimaging techniques may provide indirect description of this action and become quantifiable indicators of these processes as well as responses to the therapeutical interventions. This means that neuroimaging and neurophysiological methods can be used as biomarkers-to make a prognosis of the course of stroke recovery and define patients with great potential of improvement after treatment. This approach is most likely to lead to novel rehabilitation strategies based on categorizing individuals for personalized treatment. In this review article, we introduce neuroimaging techniques dedicated to stroke recovery analysis with reference to angiogenesis and neuroplasticity processes. The most beneficial for personalized rehabilitation are multimodal panels of stroke recovery biomarkers, including neuroimaging and neurophysiological, genetic-molecular and clinical scales.

20.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563320

RESUMEN

T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.


Asunto(s)
Toxina T-2 , Apoptosis , Línea Celular , Fibroblastos/metabolismo , Humanos , Necrosis/inducido químicamente , Toxina T-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA