Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 165: 140-152, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36167239

RESUMEN

Cell transitions between the epithelial and mesenchymal phenotypes provide the regulated morphogenesis and regeneration throughout the ontogenesis. The tissue mechanics and mechanotransduction play an essential role in these processes. Cell spheroids reproduce the cell density of native tissues and represent simple building blocks for the tissue engineering purposes. The mechanical properties of mesenchymal and epithelial cells have been extensively studied in 2D monolayer cultures, but have not been sufficiently compared in spheroids. Here, we have simultaneously applied several techniques to assess the mechanical parameters of such spheroids. The local surface mechanical properties were measured by AFM, and the bulk properties were analyzed with parallel-plate compression, as well as by observing cut opening after microdissection. The comparison of the collected data allowed us to apply the model of a solid body with surface tension, and estimate the parameters of this model. We found an expectedly higher surface tension in mesenchymal spheroids, as well as a higher bulk modulus and relaxation time. The two latter parameters agree with the bulk poroelastic behavior of spheroids, and with the higher cell density and extracellular matrix content in mesenchymal spheroids. The higher tension of the surface layer cells in mesenchymal cell spheroids was also confirmed by the viscoelastic AFM characterization. The cell phenotype affected the self-organization during the spheroid formation, as well as the structure, biomechanical properties, and spreading of spheroids. The obtained results will contribute to a more detailed description of spheroid and tissue biomechanics, and will help in controlling the tissue regeneration and morphogenesis. STATEMENT OF SIGNIFICANCE: Spheroids are widely used as building blocks for scaffold-based and scaffold-free strategies in tissue engineering. In most studies, either the concept of a solid body or a liquid with surface tension was used to describe the biomechanical behavior of spheroids. Here, we have used a model which combines both aspects, a solid body with surface tension. The "solid" aspect was described as a visco-poroelastic material, affected by the liquid redistribution through the cells and ECM at the scale of the whole spheroid. A higher surface tension was found for mesenchymal spheroids than that for epithelial spheroids, observed as a higher stiffness of the spheroid surface, as well as a larger spontaneous opening of the cut edges after microdissection.


Asunto(s)
Mecanotransducción Celular , Esferoides Celulares , Ingeniería de Tejidos , Fenotipo , Células Epiteliales
2.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501648

RESUMEN

Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell-cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology.

3.
Front Cell Dev Biol ; 9: 572727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898413

RESUMEN

Bone formation during embryogenesis is driven by interacting osteogenesis and angiogenesis with parallel endothelial differentiation. Thence, all in vitro bioengineering techniques are aimed at pre-vascularization of osteogenic bioequivalents to provide better regeneration outcomes upon transplantation. Due to appearance of cell-cell and cell-matrix interactions, 3D cultures of adipose-derived stromal cells (ADSCs) provide a favorable spatial context for the induction of different morphogenesis processes, including vasculo-, angio-, and osteogenesis and, therefore, allow modeling their communication in vitro. However, simultaneous induction of multidirectional cell differentiation in spheroids from multipotent mesenchymal stromal cells (MMSCs) was not considered earlier. Here we show that arranging ADSCs into spheroids allows rapid and spontaneous acquiring of markers of both osteo- and angiogenesis compared with 2D culture. We further showed that this multidirectional differentiation persists in time, but is not influenced by classical protocols for osteo- or angio-differentiation. At the same time, ADSC-spheroids retain similar morphology and microarchitecture in different culture conditions. These findings can contribute to a better understanding of the fundamental aspects of autonomous regulation of differentiation processes and their cross-talks in artificially created self-organizing multicellular structures. This, in turn, can find a wide range of applications in the field of tissue engineering and regeneration.

4.
J Biomed Opt ; 26(4)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33583155

RESUMEN

SIGNIFICANCE: Terahertz (THz) radiation has demonstrated a great potential in biomedical applications over the past three decades, mainly due to its non-invasive and label-free nature. Among all biological specimens, skin tissue is an optimal sample for the application of THz-based methods because it allows for overcoming some intrinsic limitations of the technique, such as a small penetration depth (0.1 to 0.3 mm for the skin, on average). AIM: We summarize the modern research results achieved when THz technology was applied to the skin, considering applications in both imaging/detection and treatment/modulation of the skin constituents. APPROACH: We perform a review of literature and analyze the recent research achievements in THz applications for skin diagnosis and investigation. RESULTS: The reviewed results demonstrate the possibilities of THz spectroscopy and imaging, both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer, dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties. The possibility of modulating cell activity and treatment of various diseases by THz-wave exposure is shown as well. CONCLUSIONS: The rapid development of THz technologies and the obtained research results for skin tissue highlight the potential of THz waves as a research and therapeutic instrument. The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimulation and control of different processes in a living skin tissue for regeneration and cancer treatment.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Espectroscopía de Terahertz , Humanos , Piel , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/radioterapia , Radiación Terahertz
5.
Biomolecules ; 10(10)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076409

RESUMEN

An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIßß3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets' aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells' aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.


Asunto(s)
Eritrocitos/patología , Fibrinógeno/aislamiento & purificación , Glicoproteínas/aislamiento & purificación , Sustancias Macromoleculares/aislamiento & purificación , Agregación Eritrocitaria/genética , Eritrocitos/química , Eritrocitos/metabolismo , Fibrinógeno/genética , Citometría de Flujo , Glicoforinas , Glicoproteínas/química , Glicoproteínas/ultraestructura , Humanos , Rayos Láser , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura , Microfluídica/métodos , Pinzas Ópticas , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología
6.
Polymers (Basel) ; 12(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854227

RESUMEN

The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely on their composition and appropriate 3D structure. A multicomponent system based on biodegradable synthetic (polycaprolactone, oligo-/polylactide) and natural (chitosan, gelatin) polymers, providing the desired processing characteristics and functionality to non-woven mats fabricated via the electrospinning technique, was developed. The solid-state reactive blending of these components provided a one-step synthesis of amphiphilic graft copolymer with an ability to form stable ultra-fine dispersions in chlorinated solvents, which could be successfully used as casting solvents for the electrospinning technique. The synthesized graft copolymer was analyzed with the aim of fractional analysis, dynamic laser scattering, FTIR-spectroscopy and DSC. Casting solution characteristics, namely viscosity, surface tension, and electroconductivity, as well as electrospinning parameters, were studied and optimized. The morphology, chemical structure of the surface layer, mechanical properties and cytocompatibility were analyzed to confirm the appropriate functionality of the formed fibrous materials as scaffolds for tissue engineering.

7.
J Biomed Opt ; 25(4): 1-16, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32351077

RESUMEN

SIGNIFICANCE: Currently, various scaffolds with immobilized cells are widely used in tissue engineering and regenerative medicine. However, the physiological activity and cell viability in such constructs might be impaired due to a lack of oxygen and nutrients. Photobiomodulation (PBM) is a promising method of preconditioning cells to increase their metabolic activity and to activate proliferation or differentiation. AIM: Investigation of the potential of PBM for stimulation of cell activities in hydrogels. APPROACH: Mesenchymal stromal cells (MSCs) isolated from human gingival mucosa were encapsulated in modified fibrin hydrogels with different thicknesses and concentrations. Constructs with cells were subjected to a single-time exposure to red (630 nm) and near-infrared (IR) (840 nm) low-intensity irradiation. After 3 days of cultivation, the viability and physiological activity of the cells were analyzed using confocal microscopy and a set of classical tests for cytotoxicity. RESULTS: The cell viability in fibrin hydrogels depended both on the thickness of the hydrogels and the concentration of gel-forming proteins. The PBM was able to improve cell viability in hydrogels. The most pronounced effect was achieved with near-IR irradiation at the 840-nm wavelength. CONCLUSIONS: PBM using near-IR light can be applied for stimulation of MSCs metabolism and proliferation in hydrogel-based constructs with thicknesses up to 3 mm.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Diferenciación Celular , Supervivencia Celular , Humanos , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...