Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(14): 10074-10087, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38526458

RESUMEN

Recent advances in electrocardiogram (ECG) diagnosis and monitoring have triggered a demand for smart and wearable ECG electrodes and readout systems. Here, we report the development of a fully screen-printed gentle-to-skin wet ECG electrode integrated with a scaled-down printed circuit board (PCB) packaged inside a 3D-printed antenna-on-package (AoP). All three components of the wet ECG electrode (i.e., silver nanowire-based conductive part, electrode gel, and adhesive gel) are screen-printed on a flexible plastic substrate and only require 265 times less metal for the conductive part and 176 times less ECG electrode gel than the standard commercial wet ECG electrodes. In addition, our electrically small AoP achieved a maximum read range of 142 m and offers a 4 times larger wireless communication range than the typical commercial chip antenna. The adult volunteers' study results indicated that our system recorded ECG data that correlated well with data from a commercial ECG system and electrodes. Furthermore, in the context of a 12-lead ECG diagnostic system, the fully printed wet ECG electrodes demonstrated a performance similar to that of commercially available wet ECG electrodes while being gentle on the skin. This was confirmed through a blind review method by two cardiology consultants and one family medicine consultant, validating the consistency of the diagnostic information obtained from both electrodes. In conclusion, these findings highlight the potential of fully screen-printed wet ECG electrodes for both monitoring and diagnostic purposes. These electrodes could serve as potential candidates for clinical practice, and the screen-printing method has the capability to facilitate industrial mass production.


Asunto(s)
Nanocables , Adulto , Humanos , Plata , Electrocardiografía , Corazón , Electrodos
2.
Anim Biotechnol ; 34(2): 424-437, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34355648

RESUMEN

Japanese quail originated from the wildlife environment and was first domesticated in Japan in 1595. Japanese quail has widely distributed in various parts of the world. This bird is characterized by its rapid growth rate, high rate of egg production, much lower space requirements, small size, good reproductive potential, short life cycle, resistance to diseases, early sexual maturity (from 39 to 50 days), better laying ability and shorter time of hatching compared with the different species of poultry. All these characteristics rendered it an excellent laboratory animal and a good economical animal protein source (for both egg and meat). Thermal stress was found to be the major limiting variable in poultry production, directly influencing bird welfare conditions. Previous research showed that heat stress in the production environment, induced by high ambient temperatures, may have a direct detrimental effect on welfare, meat quality, carcass characteristics, productivity, egg mass and egg quality. Furthermore, heat stress directly decreases quails' reproductive performance. As tiny, ground-dwelling birds, quail may appear unable to handle extreme temperatures, yet they have methods of fighting the heat. This review will help in developing and strengthening the core of the quail-based poultry sector. In addition, it provides aggregate information on the characteristics of the quail bird as a production unit in poultry farms as well as being an animal model for laboratory experiments. Also, this review provided deep insight into the domestication process and the impact of heat stress on production characteristics, which altered the domestic or Japanese quail substantially.


Asunto(s)
Coturnix , Codorniz , Animales , Calor , Carne , Aves de Corral , Respuesta al Choque Térmico
3.
Metabolites ; 12(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295891

RESUMEN

A total of 896 1-day-old straight-run (Ross-308) broilers were used to investigate the interactive effects of protein source (PS), diet structure (DS) and butyric acid (BA) on live performance and carcass characteristics, gut development and its morphology and apparent ileal digestibility (AID) of protein and amino acids (AA). Eight experimental diets comprising 8 replicates with 14 birds each were tested in a 2 × 2 × 2 factorial arrangement with complete randomized design by two levels of BA (0 and 0.1%), two forms of DS (whole vs. ground wheat) and two PS, i.e., soybean meal and canola meal (SBM vs. CM). Throughout the entire experimental period (0 to 35 d), broilers fed SBM-based diets exhibited better (p < 0.05) growth performance (feed intake (FI), body weight gain (BWG) and feed conversion ratio (FCR)), carcass parameters (p < 0.05), gut health (p < 0.05), and nutrient digestibility (p < 0.05) than CM-fed broilers. Dietary whole wheat (WW) positively affected FI (p = 0.001), BWG (p = 0.004) and FCR (p = 0.035) during the overall experimental period. Broilers fed WW had 6, 5, 8, 11 and 10% lower empty relative weights of crop, proventriculus, jejunum, ileum and colon and 25 and 15% heavier gizzard and pancreas, respectively, with longer villus height (p < 0.001), reduced crypt depth (p = 0.031) and longer villus height-to-crypt depth ratio (p < 0.001) than those fed ground-wheat-based diets. Broilers fed WW had greater (p < 0.05) AID of CP and most of the AA. Butyric acid supplementation resulted in improved (p < 0.05) growth performance and digestibility of threonine, valine, leucine, isoleucine, phenylalanine, serine and aspartate. The broilers consuming SBM had 28% lower abdominal fat than those fed CM-based diets. In conclusion, harmful consequences of a less digestible PS can partially be compensated by the inclusion of WW, and supplementation of BA further reduces these detrimental effects.

4.
Environ Sci Pollut Res Int ; 29(8): 10894-10907, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35000164

RESUMEN

Consumers demand clean-label food products, necessitating the search for new, natural antimicrobials to meet this demand while ensuring food safety. This review aimed at investigating the antimicrobial properties of black pepper (Piper guineense) against foodborne microorganisms. The existence of foodborne illness, food spoilage, food waste, the resulting negative economic impact of these issues, and consumer interests have all pushed the food industry to find alternative, safe, and natural antimicrobials to be used in foods and beverages. Consumers have also influenced the demand for novel antimicrobials due to the perceived association of current synthetic preservatives with diseases and adverse effects on children. They also have a desire for clean-label products. These combined concerns have prompted researchers at investigating plant extracts as potential sources for antimicrobials. Plants possess many antimicrobial properties; therefore, evaluating these plant extracts as a natural source of antimicrobials can lead to a preventative control method in reducing foodborne illness and food spoilage, inclusively meeting consumer needs. In most regions, P. guineense is commonly utilized due to its potent and effective medicinal properties against foodborne microorganisms.


Asunto(s)
Antiinfecciosos , Piper nigrum , Piper , Eliminación de Residuos , Antiinfecciosos/farmacología , Niño , Alimentos , Humanos
5.
Anim Biotechnol ; 33(5): 816-823, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33095104

RESUMEN

A trial was conducted to access the impact of varying levels of dietary protein (CP) and cold-pressed oil on hematological parameters, liver and kidney function, antioxidant and immunoglobulin indices and lipid profile of Japanese quail at the laying period. A number of 324 mature ten-week of age Japanese quails (216 females and 108 males) were selected. The red blood cells were increased in response to marjoram and thyme oil applied separately or together when comparing with control group (p < 0.05). Cholesterol, triglyceride, low-density lipoprotein and total lipid levels were decreased significantly in response to these oils in birds 2 to 5 month of age compared to the comparing group. Superoxide dismutase activity increased in response to dietary supplementation with marjoram and thyme compared to zero additives group and other groups (p < 0.01). The glutathione and malondialdehyde levels (p < 0.01) decreased due to supplementation with thyme oil alone and in combination with marjoram oil compared to the control and other groups in 2- to 5-month-old birds. It could be concluded quails fed a diet encompassing 18 or 20% CP or supplemented with marjoram or thyme oil exhibited improved antioxidant indices and lipid profile without any harmful influence on the other parameters.


Asunto(s)
Alimentación Animal , Coturnix , Alimentación Animal/análisis , Animales , Antibacterianos , Antioxidantes/farmacología , Colesterol , Coturnix/metabolismo , Dieta/veterinaria , Proteínas en la Dieta , Suplementos Dietéticos , Femenino , Glutatión , Lípidos , Lipoproteínas LDL , Malondialdehído , Aceites , Superóxido Dismutasa , Triglicéridos
6.
Front Pharmacol ; 12: 723040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512350

RESUMEN

Plant polyphenols have promoting health features, including anti-mutagenic, anti-inflammatory, anti-thrombotic, anti-atherogenic, and anti-allergic effects. These polyphenols improve the immune system by affecting the white blood cell proliferation, as well as by the synthesis of cytokines and other factors, which contribute to immunological resistance. Olive trees are one of the most famous trees in the world. Whereas, olive olive oil and derivatives represent a large group of feeding resource for farm animals. In recent years, remarkable studies have been carried out to show the possible use of olive oil and derivatives for improvement of both animal performance and product quality. In vivo application of olive oil and its derived products has shown to maintain oxidative balance owing to its polyphenolic content. Consumption of extra virgin olive oil reduces the inflammation, limits the risk of liver damage, and prevents the progression of steatohepatitis through its potent antioxidant activities. Also, the monounsaturated fatty acids content of olive oil (particularly oleic acid), might have positive impacts on lipid peroxidation and hepatic protection. Therefore, this review article aims to highlight the nutritional applications and beneficial health aspects of olive oil and its effect on poultry production.

7.
Animals (Basel) ; 11(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201914

RESUMEN

Pesticides are chemicals used to control pests, such as aquatic weeds, insects, aquatic snails, and plant diseases. They are extensively used in forestry, agriculture, veterinary practices, and of great public health importance. Pesticides can be categorized according to their use into three major types (namely insecticides, herbicides, and fungicides). Water contamination by pesticides is known to induce harmful impacts on the production, reproduction, and survivability of living aquatic organisms, such as algae, aquatic plants, and fish (shellfish and finfish species). The literature and information present in this review article facilitate evaluating the toxic effects from exposure to various fish species to different concentrations of pesticides. Moreover, a brief overview of sources, classification, mechanisms of action, and toxicity signs of pyrethroid insecticides in several fish species will be illustrated with special emphasis on Cypermethrin toxicity.

8.
Animals (Basel) ; 11(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203158

RESUMEN

Nanotechnology is one of the major advanced technologies applied in different fields, including agriculture, livestock, medicine, and food sectors. Nanomaterials can help maintain the sustainability of the livestock sector through improving quantitative and qualitative production of safe, healthy, and functional animal products. Given the diverse nanotechnology applications in the animal nutrition field, the use of nanomaterials opens the horizon of opportunities for enhancing feed utilization and efficiency in animal production. Nanotechnology facilitates the development of nano vehicles for nutrients (including trace minerals), allowing efficient delivery to improve digestion and absorption for better nutrient metabolism and physiology. Nanominerals are interesting alternatives for inorganic and organic minerals for animals that can substantially enhance the bioavailability and reduce pollution. Nanominerals promote antioxidant activity, and improve growth performance, reproductive performance, immune response, intestinal health, and the nutritional value of animal products. Nanominerals are also helpful for improving assisted reproductive technologies (ART) outcomes by enriching media for cryopreservation of spermatozoa, oocytes, and embryos with antioxidant nanominerals. Despite the promising positive effects of nanominerals on animal performance and health, there are various challenges related to nanominerals, including their metabolism and fate in the animal's body. Thus, the economic, legal, and ethical implications of nanomaterials must also be considered by the authority. This review highlights the benefits of including nanominerals (particularly nano-selenium and nano-zinc) in animal diets and/or cryopreservation media, focusing on modes of action, physiological effects, and the potential toxicity of their impact on human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...