Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(3): 448-457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418586

RESUMEN

Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive ß cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes ß cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although ß cell-specific loss of inceptor improves ß cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic ß cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the ß cells, improves glucose homeostasis by enhancing ß cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones , Masculino , Animales , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta , Insulina/metabolismo , Homeostasis , Neuronas/metabolismo
2.
Front Cell Dev Biol ; 11: 1240039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691832

RESUMEN

Spermatogenesis is a crucial biological process that enables the production of functional sperm, allowing for successful reproduction. Proper germ cell differentiation and maturation require tight regulation of hormonal signals, cellular signaling pathways, and cell biological processes. The acrosome is a lysosome-related organelle at the anterior of the sperm head that contains enzymes and receptors essential for egg-sperm recognition and fusion. Even though several factors crucial for acrosome biogenesis have been discovered, the precise molecular mechanism of pro-acrosomal vesicle formation and fusion is not yet known. In this study, we investigated the role of the insulin inhibitory receptor (inceptor) in acrosome formation. Inceptor is a single-pass transmembrane protein with similarities to mannose-6-phosphate receptors (M6PR). Inceptor knockout male mice are infertile due to malformations in the acrosome and defects in the nuclear shape of spermatozoa. We show that inceptor is expressed in early spermatids and mainly localizes to vesicles between the Golgi apparatus and acrosome. Here we show that inceptor is an essential factor in the intracellular transport of trans-Golgi network-derived vesicles which deliver acrosomal cargo in maturing spermatids. The absence of inceptor results in vesicle-fusion defects, acrosomal malformation, and male infertility. These findings support our hypothesis of inceptor as a universal lysosomal or lysosome-related organelle sorting receptor expressed in several secretory tissues.

3.
Mol Metab ; 71: 101706, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931467

RESUMEN

OBJECTIVE: The insulin/insulin-like growth factor 1 (IGF1) pathway is emerging as a crucial component of prostate cancer progression. Therefore, we investigated the role of the novel insulin/IGF1 signaling modulator inceptor in prostate cancer. METHODS: We analyzed the expression of inceptor in human samples of benign prostate epithelium and prostate cancer. Further, we performed signaling and functional assays using prostate cancer cell lines. RESULTS: We found that inceptor was expressed in human benign and malignant prostate tissue and its expression positively correlated with various genes of interest, including genes involved in androgen signaling. In vitro, total levels of inceptor were increased upon androgen deprivation and correlated with high levels of androgen receptor in the nucleus. Inceptor overexpression was associated with increased cell migration, altered IGF1R trafficking and higher IGF1R activation. CONCLUSIONS: Our in vitro results showed that inceptor expression was associated with androgen status, increased migration, and IGF1R signaling. In human samples, inceptor expression was significantly correlated with markers of prostate cancer progression. Taken together, these data provide a basis for investigation of inceptor in the context of prostate cancer.


Asunto(s)
Insulinas , Neoplasias de la Próstata , Masculino , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias de la Próstata/metabolismo , Próstata/metabolismo , Andrógenos , Antagonistas de Andrógenos , Movimiento Celular
4.
Nat Metab ; 4(9): 1097-1108, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131204

RESUMEN

Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing ß cells to stop or reverse disease progression. Thus, pancreatic ß cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target ß cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent ß cells. We describe currently available therapies and their mode of action, as well as insufficiencies of glucagon-like peptide 1 (GLP-1) and insulin therapies. We discuss and summarize data collected over the last decades that support the notion that pharmacological targeting of ß cell insulin signalling might protect and/or regenerate ß cells as an improved treatment of patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo
5.
Cell ; 184(11): 2911-2926.e18, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33932338

RESUMEN

Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.


Asunto(s)
Cilios/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Optogenética/métodos , Transducción de Señal/fisiología , Pez Cebra/metabolismo
7.
Nature ; 590(7845): 326-331, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505018

RESUMEN

Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic ß-cells causes overt diabetes in mice; thus, therapies that sensitize ß-cells to insulin may protect patients with diabetes against ß-cell failure1-3. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse ß-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene Iir). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R4, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)5. Knockout mice that lack inceptor (Iir-/-) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from Iir-/- mice showed an increase in the activation of INSR-IGF1R in Iir-/- pancreatic tissue, resulting in an increase in the proliferation and mass of ß-cells. Similarly, inducible ß-cell-specific Iir-/- knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR-IGF1R and increased proliferation of ß-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR-IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR-IGF1R in ß-cells. Together, our findings show that inceptor shields insulin-producing ß-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR-IGF1R sensitization and diabetes therapy.


Asunto(s)
Glucemia/metabolismo , Antagonistas de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Animales , Glucemia/análisis , Línea Celular , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula , Clatrina/metabolismo , Células Endocrinas/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Prueba de Tolerancia a la Glucosa , Aparato de Golgi/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Proteínas de la Membrana , Ratones , Proteínas de Neoplasias/química , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología
8.
Trends Pharmacol Sci ; 42(2): 85-95, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33353789

RESUMEN

Diabetes is a disease with pandemic dimensions and no pharmacological treatment prevents disease progression. Dedifferentiation has been proposed to be a driver of beta-cell dysfunction in both type 1 and type 2 diabetes. Regenerative therapies aim to re-establish function in dysfunctional or dedifferentiated beta cells and restore the defective insulin secretion. Unsustainable levels of insulin production, with increased demand at disease onset, strain the beta-cell secretory machinery, leading to endoplasmic reticulum (ER) stress. Unresolved chronic ER stress is a major contributor to beta-cell loss of function and identity. Restoring ER homeostasis, enhancing ER-associated degradation of misfolded protein, and boosting chaperoning activity, are emerging therapeutic approaches for diabetes treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Estrés del Retículo Endoplásmico , Homeostasis , Humanos , Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...