Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885696

RESUMEN

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

2.
Quant Plant Biol ; 2: e4, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37077206

RESUMEN

Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.

3.
New Phytol ; 229(6): 3534-3548, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33289112

RESUMEN

Flowering time is a key adaptive and agronomic trait. In Arabidopsis, natural variation in expression levels of the floral repressor FLOWERING LOCUS C (FLC) leads to differences in vernalization. In Brassica napus there are nine copies of FLC. Here, we study how these multiple FLC paralogues determine vernalization requirement as a system. We collected transcriptome time series for Brassica napus spring, winter, semi-winter, and Siberian kale crop types. Modelling was used to link FLC expression dynamics to floral response following vernalization. We show that relaxed selection pressure has allowed expression of FLC paralogues to diverge, resulting in variation of FLC expression during cold treatment between paralogues and accessions. We find that total FLC expression dynamics best explains differences in cold requirement between cultivars, rather than expression of specific FLC paralogues. The combination of multiple FLC paralogues with different expression dynamics leads to rich behaviour in response to cold and a wide range of vernalization requirements in B. napus. We find evidence for different strategies to determine the response to cold in existing winter rapeseed accessions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
4.
Nat Ecol Evol ; 2(6): 1000-1008, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29686237

RESUMEN

Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome, which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.


Asunto(s)
Ascomicetos/genética , Fraxinus/microbiología , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Europa (Continente) , Haplotipos/genética
5.
Theor Appl Genet ; 127(8): 1831-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24985064

RESUMEN

KEY MESSAGE: A high level of genetic diversity was found in the A. E. Watkins bread wheat landrace collection. Genotypic information was used to determine the population structure and to develop germplasm resources. In the 1930s A. E. Watkins acquired landrace cultivars of bread wheat (Triticum aestivum L.) from official channels of the board of Trade in London, many of which originated from local markets in 32 countries. The geographic distribution of the 826 landrace cultivars of the current collection, here called the Watkins collection, covers many Asian and European countries and some from Africa. The cultivars were genotyped with 41 microsatellite markers in order to investigate the genetic diversity and population structure of the collection. A high level of genetic diversity was found, higher than in a collection of modern European winter bread wheat varieties from 1945 to 2000. Furthermore, although weak, the population structure of the Watkins collection reveals nine ancestral geographical groupings. An exchange of genetic material between ancestral groups before commercial wheat-breeding started would be a possible explanation for this. The increased knowledge regarding the diversity of the Watkins collection was used to develop resources for wheat research and breeding, one of them a core set, which captures the majority of the genetic diversity detected. The understanding of genetic diversity and population structure together with the availability of breeding resources should help to accelerate the detection of new alleles in the Watkins collection.


Asunto(s)
Pan , Ecotipo , Genes de Plantas , Estudios de Asociación Genética , Triticum/genética , Variación Genética , Técnicas de Genotipaje , Geografía , Repeticiones de Microsatélite , Fenotipo , Dinámica Poblacional
6.
Theor Appl Genet ; 119(3): 383-95, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19430758

RESUMEN

Variation in ear emergence time is critical for the adaptation of wheat (Triticum aestivum L.) to specific environments. The aim of this study was to identify genes controlling ear emergence time in elite European winter wheat germplasm. Four doubled haploid populations derived from the crosses: Avalon x Cadenza, Savannah x Rialto, Spark x Rialto, and Charger x Badger were selected which represent diversity in European winter wheat breeding programmes. Ear emergence time was recorded as the time from 1st May to heading in replicated field trials in the UK, France and Germany. Genetic maps based on simple sequence repeat (SSR) and Diversity Arrays Technology (DArT) markers were constructed for each population. One hundred and twenty-seven significant QTL were identified in the four populations. These effects were condensed into 19 meta-QTL projected onto a consensus SSR map of wheat. These effects are located on chromosomes 1B (2 meta-QTL), 1D, 2A (2 meta-QTL), 3A, 3B (2 meta-QTL), 4B, 4D, 5A (2 meta-QTL), 5B, 6A, 6B 7A (2 meta-QTL), 7B and 7D. The identification of environmentally robust earliness per se effects will facilitate the fine tuning of ear emergence in predictive wheat breeding programmes.


Asunto(s)
Sitios de Carácter Cuantitativo , Estaciones del Año , Triticum/genética , Cruzamiento , Cromosomas de las Plantas , Cruzamientos Genéticos , Ambiente , Marcadores Genéticos , Haploidia , Repeticiones de Microsatélite , Mapeo Físico de Cromosoma , Factores de Tiempo , Triticum/anatomía & histología , Triticum/crecimiento & desarrollo
7.
Methods Mol Biol ; 286: 327-40, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15310931

RESUMEN

Production of transgenic plants is now routine for many of our crop species. Methods for the detailed molecular analysis of transgenic plants are available, but often the exact location of the transgene within the crop genome is poorly understood. As a starting point to understanding more about the site of transgene insertion, transgenes can be physically located using fluorescence in situ hybridization (FISH). This technique allows transgenes to be located to specific chromosome regions following the hybridization of a fluorescent labelled probe to a chromosome spread. The technique is sensitive enough to detect single transgene copies and can reveal information about the complexity of a transgene insertion site as well as identifying plants homozygous for the transgene. A FISH method is described that has been used successfully to detect single-transgene copies in mitotic metaphase chromosome preparations of wheat and barley.


Asunto(s)
Cromosomas de las Plantas/genética , Hordeum/genética , Plantas Modificadas Genéticamente/genética , Triticum/genética , Mapeo Cromosómico/métodos , Hibridación Fluorescente in Situ/métodos , Mitosis , Plantas Modificadas Genéticamente/citología , Plásmidos/genética
8.
Genetics ; 167(3): 1371-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15280249

RESUMEN

The exact site of transgene insertion into a plant host genome is one feature of the genetic transformation process that cannot, at present, be controlled and is often poorly understood. The site of transgene insertion may have implications for transgene stability and for potential unintended effects of the transgene on plant metabolism. To increase our understanding of transgene insertion sites in barley, a detailed analysis of transgene integration in independently derived transgenic barley lines was carried out. Fluorescence in situ hybridization (FISH) was used to physically map 23 transgene integration sites from 19 independent barley lines. Genetic mapping further confirmed the location of the transgenes in 11 of these lines. Transgene integration sites were present only on five of the seven barley chromosomes. The pattern of transgene integration appeared to be nonrandom and there was evidence of clustering of independent transgene insertion events within the barley genome. In addition, barley genomic regions flanking the transgene insertion site were isolated for seven independent lines. The data from the transgene flanking regions indicated that transgene insertions were preferentially located in gene-rich areas of the genome. These results are discussed in relation to the structure of the barley genome.


Asunto(s)
Mapeo Cromosómico , Hordeum/genética , Transformación Genética , Transgenes/genética , Bases de Datos Genéticas , Ligamiento Genético , Hibridación Fluorescente in Situ , Repeticiones de Minisatélite/genética , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA