Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(2): e0171750, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28178346

RESUMEN

Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.


Asunto(s)
Ecosistema , Ambiente , Minería , Océanos y Mares , Algoritmos , Modelos Teóricos
2.
Zootaxa ; 4092(1): 1-32, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-27394364

RESUMEN

The number of records of the genus Prionospio Malmgren, 1867, from the deep sea (>2000 m) are relatively few and do not reflect the actual occurrence of species nor their potential ecological importance. In this paper we describe five new species of this genus (Prionospio amarsupiata sp. nov., P. vallensis sp. nov., P. branchilucida sp. nov., P. hermesia sp. nov. and P. kaplani sp. nov.) all of which are abundant members of the deep-sea community. We also describe two new species of the genus Aurospio Maciolek, 1981 (Aurospio abranchiata sp. nov. and A. tribranchiata sp. nov.) again common elements of the abyssal fauna. Two of the new species have characters which question the generic distinctiveness of Prionospio and Aurospio. The problems in differentiating these two genera are discussed.


Asunto(s)
Poliquetos/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , Ecosistema , Océanos y Mares , Tamaño de los Órganos , Poliquetos/anatomía & histología , Poliquetos/crecimiento & desarrollo
3.
Ecology ; 95(6): 1651-62, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039229

RESUMEN

It has been challenging to establish the mechanisms that link ecosystem functioning to environmental and resource variation, as well as community structure, composition, and compensatory dynamics. A compelling hypothesis of compensatory dynamics, known as "zero-sum" dynamics, is framed in terms of energy resource and demand units, where there is an inverse link between the number of individuals in a community and the mean individual metabolic rate. However, body size energy distributions that are nonuniform suggest a niche advantage at a particular size class, which suggests a limit to which metabolism can explain community structuring. Since 1989, the composition and structure of abyssal seafloor communities in the northeast Pacific and northeast Atlantic have varied interannually with links to climate and resource variation. Here, for the first time, class and mass-specific individual respiration rates were examined along with resource supply and time series of density and biomass data of the dominant abyssal megafauna, echinoderms. Both sites had inverse relationships between density and mean individual metabolic rate. We found fourfold variation in echinoderm respiration over interannual timescales at both sites, which were linked to shifts in species composition and structure. In the northeastern Pacific, the respiration of mobile surface deposit feeding echinoderms was positively linked to climate-driven particulate organic carbon fluxes with a temporal lag of about one year, respiring - 1-6% of the annual particulate organic carbon flux.


Asunto(s)
Equinodermos/fisiología , Ecosistema , Consumo de Oxígeno/fisiología , Animales , Océano Atlántico , Modelos Biológicos , Océano Pacífico , Dinámica Poblacional , Factores de Tiempo
4.
PLoS One ; 8(5): e61550, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658696

RESUMEN

In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km(2) in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.


Asunto(s)
Biodiversidad , Biomasa , Animales , Océano Atlántico , Biota , Ecosistema , Agua de Mar/química , Temperatura
5.
FEMS Microbiol Ecol ; 80(2): 452-68, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22273466

RESUMEN

Spatial patchiness in marine surface bacterioplankton populations was investigated in the Southern Ocean, where the Antarctic Circumpolar Current meets the islands of the Scotia Arc and is subjected to terrestrial input, upwelling of nutrients and seasonal phytoplankton blooms. Total bacterioplankton population density, group-specific taxonomic distribution and six of eight dominant members of the bacterioplankton community were found to be consistent across 18 nearshore sites at eight locations around the Scotia Arc. Results from seven independent 16S rRNA gene clone libraries (1223 sequences in total) and fluorescent in situ hybridization suggested that microbial assemblages were predominantly homogeneous between Scotia Arc sites, where the Alphaproteobacteria, Gammaproteobacteria and the Cytophaga-Flavobacterium-Bacteroidetes cluster were the dominant bacterial groups. Of the 1223 useable sequences generated, 1087 (89%) shared ≥ 97% similarity with marine microorganisms and 331 (27%) matched published sequences previously detected in permanently cold Arctic and Antarctic marine environments. Taken together, results suggest that the dominant bacterioplankton groups are consistent between locations, but significant differences may be detected across the rare biodiversity.


Asunto(s)
Bacterias/clasificación , Plancton/clasificación , Agua de Mar/microbiología , Regiones Antárticas , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Secuencia de Bases , Biodiversidad , Variación Genética , Datos de Secuencia Molecular , Océanos y Mares , Plancton/genética , Plancton/crecimiento & desarrollo , ARN Ribosómico 16S , Microbiología del Agua
6.
J Exp Biol ; 214(Pt 15): 2512-21, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21753044

RESUMEN

Echinoderms are important components of deep-sea communities because of their abundance and the fact that their activities contribute to carbon cycling. Estimating the echinoderm contribution to food webs and carbon cycling is important to our understanding of the functioning of the deep-sea environment and how this may alter in the future as climatic changes take place. Metabolic rate data from deep-sea echinoderm species are, however, scarce. To obtain such data from abyssal echinoderms, a novel in situ respirometer system, the benthic incubation chamber system (BICS), was deployed by remotely operated vehicle (ROV) at depths ranging from 2200 to 3600 m. Oxygen consumption rates were obtained in situ from four species of abyssal echinoderm (Ophiuroidea and Holothuroidea). The design and operation of two versions of BICS are presented here, together with the in situ respirometry measurements. These results were then incorporated into a larger echinoderm metabolic rate data set, which included the metabolic rates of 84 echinoderm species from all five classes (Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea). The allometric scaling relationships between metabolic rate and body mass derived in this study for each echinoderm class were found to vary. Analysis of the data set indicated no change in echinoderm metabolic rate with depth (by class or phylum). The allometric scaling relationships presented here provide updated information for mass-dependent deep-sea echinoderm metabolic rate for use in ecosystem models, which will contribute to the study of both shallow water and deep-sea ecosystem functioning and biogeochemistry.


Asunto(s)
Equinodermos/metabolismo , Animales , Océano Atlántico , Metabolismo Basal , Ambiente , Consumo de Oxígeno , Fisiología Comparada/métodos , Especificidad de la Especie
7.
PLoS One ; 6(6): e20697, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695118

RESUMEN

The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO(2), but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.


Asunto(s)
Ecología , Fertilizantes , Hierro/farmacología , Agua de Mar , Biomasa , Carbono/análisis , Clorofila , Océano Índico , Lípidos/análisis , Nitrógeno/análisis , Especificidad de la Especie
8.
PLoS One ; 5(12): e15323, 2010 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-21209928

RESUMEN

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.


Asunto(s)
Biomasa , Biología Marina/métodos , Algoritmos , Animales , Inteligencia Artificial , Biodiversidad , Carbono/química , Biología Computacional/métodos , Ecosistema , Modelos Biológicos , Océanos y Mares , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...