Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
medRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-39108517

RESUMEN

Background: Mutations within the genes PRKN and PINK1 are the leading cause of early onset autosomal recessive Parkinson's disease (PD). However, the genetic cause of most early-onset PD (EOPD) cases still remains unresolved. Long-read sequencing has successfully identified many pathogenic structural variants that cause disease, but this technology has not been widely applied to PD. We recently identified the genetic cause of EOPD in a pair of monozygotic twins by uncovering a complex structural variant that spans over 7 Mb, utilizing Oxford Nanopore Technologies (ONT) long-read sequencing. In this study, we aimed to expand on this and assess whether a second variant could be detected with ONT long-read sequencing in other unresolved EOPD cases reported to carry one heterozygous variant in PRKN or PINK1. Methods: ONT long-read sequencing was performed on patients with one reported PRKN/PINK1 pathogenic variant. EOPD patients with an age at onset younger than 50 were included in this study. As a positive control, we also included EOPD patients who had already been identified to carry two known PRKN pathogenic variants. Initial genetic testing was performed using either short-read targeted panel sequencing for single nucleotide variants and multiplex ligation-dependent probe amplification (MLPA) for copy number variants. Results: 48 patients were included in this study (PRKN "one-variant" n = 24, PINK1 "one-variant" n = 12, PRKN "two-variants" n = 12). Using ONT long-read sequencing, we detected a second pathogenic variant in six PRKN "one-variant" patients (26%, 6/23) but none in the PINK1 "one-variant" patients (0%, 0/12). Long-read sequencing identified one case with a complex inversion, two instances of structural variant overlap, and three cases of duplication. In addition, in the positive control PRKN "two-variants" group, we were able to identify both pathogenic variants in PRKN in all the patients (100%, 12/12). Conclusions: This data highlights that ONT long-read sequencing is a powerful tool to identify a pathogenic structural variant at the PRKN locus that is often missed by conventional methods. Therefore, for cases where conventional methods fail to detect a second variant for EOPD, long-read sequencing should be considered as an alternative and complementary approach.

2.
NPJ Parkinsons Dis ; 10(1): 136, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060285

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder with a significant risk proportion driven by genetics. While much progress has been made, most of the heritability remains unknown. This is in-part because previous genetic studies have focused on the contribution of single nucleotide variants. More complex forms of variation, such as structural variants and tandem repeats, are already associated with several synucleinopathies. However, because more sophisticated sequencing methods are usually required to detect these regions, little is understood regarding their contribution to PD. One example is a polymorphic CT-rich region in intron 4 of the SNCA gene. This haplotype has been suggested to be associated with risk of Lewy Body (LB) pathology in Alzheimer's Disease and SNCA gene expression, but is yet to be investigated in PD. Here, we attempt to resolve this CT-rich haplotype and investigate its role in PD. We performed targeted PacBio HiFi sequencing of the region in 1375 PD cases and 959 controls. We replicate the previously reported associations and a novel association between two PD risk SNVs (rs356182 and rs5019538) and haplotype 4, the largest haplotype. Through quantitative trait locus analyzes we identify a significant haplotype 4 association with alternative CAGE transcriptional start site usage, not leading to significant differential SNCA gene expression in post-mortem frontal cortex brain tissue. Therefore, disease association in this locus might not be biologically driven by this CT-rich repeat region. Our data demonstrates the complexity of this SNCA region and highlights that further follow up functional studies are warranted.

4.
medRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746197

RESUMEN

Background: PRKN biallelic pathogenic variants are the most common cause of autosomal recessive early-onset Parkinson's disease (PD). However, the variants responsible for suspected PRKN- PD individuals are not always identified with standard genetic testing. Objectives: Identify the genetic cause in two siblings with a PRKN -PD phenotype using long-read sequencing (LRS). Methods: The genetic investigation involved standard testing using successively multiple ligation probe amplification (MLPA), Sanger sequencing, targeted sequencing, whole-exome sequencing and LRS. Results: MLPA and targeted sequencing identified one copy of exon four in PRKN but no other variants were identified. Subsequently, LRS unveiled a large deletion encompassing exon 3 to 4 on one allele and a duplication of exon 3 on the second allele; explaining the siblings' phenotype. MLPA could not identify the balanced rearrangement of exon 3. Conclusions: This study highlights the potential utility of long-read sequencing in the context of unsolved typical PRKN- PD individuals.

5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732020

RESUMEN

Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad de Parkinson , Polimorfismo de Nucleótido Simple , Enfermedad de Parkinson/genética , Humanos , Variación Genética , Estudio de Asociación del Genoma Completo
6.
NPJ Parkinsons Dis ; 10(1): 108, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789445

RESUMEN

A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson's disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson's Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.

7.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464144

RESUMEN

DNA methylation most commonly occurs as 5-methylcytosine (5-mC) in the human genome and has been associated with human diseases. Recent developments in single-molecule sequencing technologies (Oxford Nanopore Technologies (ONT) and Pacific Biosciences) have enabled readouts of long, native DNA molecules, including cytosine methylation. ONT recently upgraded their Nanopore sequencing chemistry and kits from R9 to the R10 version, which yielded increased accuracy and sequencing throughput. However the effects on methylation detection have not yet been documented. Here we performed a series of computational analyses to characterize differences in Nanopore-based 5mC detection between the ONT R9 and R10 chemistries. We compared 5mC calls in R9 and R10 for three human genome datasets: a cell line, a frontal cortex brain sample, and a blood sample. We performed an in-depth analysis on CpG islands and homopolymer regions, and documented high concordance for methylation detection among sequencing technologies. The strongest correlation was observed between Nanopore R10 and Illumina bisulfite technologies for cell line-derived datasets. Subtle differences in methylation datasets between technologies can impact analysis tools such as differential methylation calling software. Our findings show that comparisons can be drawn between methylation data from different Nanopore chemistries using guided hypotheses. This work will facilitate comparison among Nanopore data cohorts derived using different chemistries from large scale sequencing efforts, such as the NIH CARD Long Read Initiative.

8.
Am J Hum Genet ; 111(3): 544-561, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38307027

RESUMEN

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Aberraciones Cromosómicas , Telómero/genética , ADN
9.
Sci Rep ; 14(1): 792, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191889

RESUMEN

SINE-VNTR-Alu (SVA) retrotransposons represent mobile regulatory elements that have the potential to influence the surrounding genome when they insert into a locus. Evolutionarily recent mobilisation has resulted in loci in the human genome where a given retrotransposon might be observed to be present or absent, termed a retrotransposon insertion polymorphism (RIP). We previously observed that an SVA RIP ~ 2 kb upstream of LRIG2 on chromosome 1, the 'LRIG2 SVA', was associated with differences in local gene expression and methylation, and that the two were correlated. Here, we have used CRISPR-mediated deletion of the LRIG2 SVA in a cell line model to validate that presence of the retrotransposon is directly affecting local expression and provide evidence that is suggestive of a modest role for the SVA in modulating nearby methylation. Additionally, in leveraging an available Hi-C dataset we observed that the LRIG2 SVA was also involved in long-range chromatin interactions with a cluster of genes ~ 300 kb away, and that expression of these genes was to varying degrees associated with dosage of the SVA in both CRISPR cell line and population models. Altogether, these data support a regulatory role for SVAs in the modulation of gene expression, with the latter potentially involving chromatin looping, consistent with the model that RIPs may contribute to interpersonal differences in transcriptional networks.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Retroelementos , Humanos , Elementos de Nucleótido Esparcido Corto , Cromatina , Expresión Génica , Glicoproteínas de Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA