Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 106(6): 963-976.e4, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32268119

RESUMEN

During associative conditioning, animals learn which sensory cues are predictive for positive or negative conditions. Because sensory cues are encoded by distributed neurons, one has to monitor plasticity across many synapses to capture how learned information is encoded. We analyzed synaptic boutons of Kenyon cells of the Drosophila mushroom body γ lobe, a brain structure that mediates olfactory learning. A fluorescent Ca2+ sensor was expressed in single Kenyon cells so that axonal boutons could be assigned to distinct cells and Ca2+ could be measured across many animals. Learning induced directed synaptic plasticity in specific compartments along the axons. Moreover, we show that odor-evoked Ca2+ dynamics across boutons decorrelate as a result of associative learning. Information theory indicates that learning renders the stimulus representation more distinct compared with naive stimuli. These data reveal that synaptic boutons rather than cells act as individually modifiable units, and coherence among them is a memory-encoding parameter.


Asunto(s)
Aprendizaje por Asociación/fisiología , Cuerpos Pedunculados/citología , Neuronas/fisiología , Odorantes , Terminales Presinápticos/fisiología , Animales , Calcio/metabolismo , Condicionamiento Clásico , Drosophila melanogaster , Memoria/fisiología , Microscopía Confocal , Microscopía Fluorescente , Plasticidad Neuronal , Imagen Óptica , Olfato , Sinapsis
2.
J Vis Exp ; (152)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31657798

RESUMEN

Decades of research in many model organisms have led to the current concept of synaptic plasticity underlying learning and memory formation. Learning-induced changes in synaptic transmission are often distributed across many neurons and levels of processing in the brain. Therefore, methods to visualize learning-dependent synaptic plasticity across neurons are needed. The fruit fly Drosophila melanogaster represents a particularly favorable model organism to study neuronal circuits underlying learning. The protocol presented here demonstrates a way in which the processes underlying the formation of associative olfactory memories, i.e., synaptic activity and their changes, can be monitored in vivo. Using the broad array of genetic tools available in Drosophila, it is possible to specifically express genetically encoded calcium indicators in determined cell populations and even single cells. By fixing a fly in place, and opening the head capsule, it is possible to visualize calcium dynamics in these cells whilst delivering olfactory stimuli. Additionally, we demonstrate a set-up in which the fly can be subjected, simultaneously, to electric shocks to the body. This provides a system in which flies can undergo classical olfactory conditioning - whereby a previously naïve odor is learned to be associated with electric shock punishment - at the same time as the representation of this odor (and other untrained odors) is observed in the brain via two-photon microscopy. Our lab has previously reported the generation of synaptically localized calcium sensors, which enables one to confine the fluorescent calcium signals to pre- or postsynaptic compartments. Two-photon microscopy provides a way to spatially resolve fine structures. We exemplify this by focusing on neurons integrating information from the mushroom body, a higher-order center of the insect brain. Overall, this protocol provides a method to examine the synaptic connections between neurons whose activity is modulated as a result of olfactory learning.


Asunto(s)
Calcio/metabolismo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Drosophila melanogaster/fisiología , Memoria/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica , Imagen Molecular , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Percepción Olfatoria/fisiología , Transmisión Sináptica
3.
Sci Rep ; 5: 13132, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26255707

RESUMEN

In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females.


Asunto(s)
Acetatos/farmacología , Drosophila melanogaster/fisiología , Conducta Alimentaria/efectos de los fármacos , Ácidos Oléicos/farmacología , Feromonas/farmacología , Atractivos Sexuales/farmacología , Acetatos/química , Ácido Acético/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Insulina/metabolismo , Masculino , Neuronas/metabolismo , Ácidos Oléicos/química , Feromonas/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Odorantes/metabolismo , Atractivos Sexuales/química , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Olfato/fisiología , Inanición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...