Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 587: 216728, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38431036

RESUMEN

Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.


Asunto(s)
Hierro , Neoplasias , Humanos , Muerte Celular , Hierro/metabolismo , Ferritinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Lisosomas/metabolismo
2.
Phytomedicine ; 121: 155089, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37738908

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly lethal cancer characterized by dominant driver mutations, including p53. Consequently, there is an urgent need to search for novel therapeutic agents to treat HCC. Andrographolide (Andro), a clinically available anti-inflammatory phytochemical agent, has shown inhibitory effects against various types of cancer, including HCC. However, the underlying molecular mechanisms of its action remain poorly understood. PURPOSE: This study aims to investigate the molecular mechanisms by which p53 and p62 collectively affect Andro-induced HCC cell death, using both in vitro and in vivo models. METHODS: In vitro cellular experiments were conducted to examine the effects of Andro on cell viability and elucidate its mechanisms of action. In vivo xenograft experiments further validated the anti-cancer effects of Andro. RESULTS: Andro induced dose- and time-dependent HCC cell death while sparing normal HL-7702 hepatocytes. Furthermore, Andro caused DNA damage through the generation of reactive oxygen species (ROS), a critical event leading to cell death. Notably, HCC cells expressing p53 exhibited greater resistance to Andro-induced cell death compared to p53-deficient cells, likely due to the ability of p53 to induce G2/M cell cycle arrest. Additionally, Andro-induced p62 aggregation led to the proteasomal degradation of RAD51 and 53BP1, two key proteins involved in DNA damage repair. Consequently, silencing or knocking out p62 facilitated DNA damage repair and protected HCC cells. Importantly, disruption of either p53 or p62 did not affect the expression of the other protein. These findings were further supported by the observation that xenograft tumors formed by p62-knockout HCC cells displayed increased resistance to Andro treatment. CONCLUSION: This study elucidates the mechanistic basis of Andro-induced HCC cell death. It provides valuable insights for repurposing Andro for the treatment of HCC, regardless of the presence of functional p53.


Asunto(s)
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Humanos , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Muerte Celular , Diterpenos/farmacología , Diterpenos/uso terapéutico , Línea Celular Tumoral , Antiinflamatorios/farmacología , Daño del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...