Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4943, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582831

RESUMEN

Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.


Asunto(s)
Proteínas de Drosophila , Drosophila , Metabolismo Energético , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Ratones , Ciclo del Ácido Cítrico/fisiología , Glucólisis , Músculos/metabolismo , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas de Drosophila/genética , Factores de Transcripción/genética
2.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061542

RESUMEN

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Asunto(s)
Proteínas de Drosophila , Mapas de Interacción de Proteínas , Animales , Mapas de Interacción de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeo de Interacción de Proteínas/métodos , Técnicas del Sistema de Dos Híbridos
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115400

RESUMEN

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Asunto(s)
Células Madre Adultas/metabolismo , Proliferación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/metabolismo , Intestinos/metabolismo , Prohibitinas/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Homeostasis/fisiología , Interferencia de ARN/fisiología , Transducción de Señal/fisiología
4.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076390

RESUMEN

Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags linked to proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we characterize two short (<15aa) NanoTag epitopes, 127D01 and VHH05, and their corresponding high-affinity nanobodies. We demonstrate their use in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Epítopos/inmunología , Anticuerpos de Dominio Único/metabolismo , Animales
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34588310

RESUMEN

Loss of metabolic homeostasis is a hallmark of aging and is characterized by dramatic metabolic reprogramming. To analyze how the fate of labeled methionine is altered during aging, we applied 13C5-Methionine labeling to Drosophila and demonstrated significant changes in the activity of different branches of the methionine metabolism as flies age. We further tested whether targeted degradation of methionine metabolism components would "reset" methionine metabolism flux and extend the fly lifespan. Specifically, we created transgenic flies with inducible expression of Methioninase, a bacterial enzyme capable of degrading methionine and revealed methionine requirements for normal maintenance of lifespan. We also demonstrated that microbiota-derived methionine is an alternative and important source in addition to food-derived methionine. In this genetic model of methionine restriction (MetR), we also demonstrate that either whole-body or tissue-specific Methioninase expression can dramatically extend Drosophila health- and lifespan and exerts physiological effects associated with MetR. Interestingly, while previous dietary MetR extended lifespan in flies only in low amino acid conditions, MetR from Methioninase expression extends lifespan independently of amino acid levels in the food. Finally, because impairment of the methionine metabolism has been previously associated with the development of Alzheimer's disease, we compared methionine metabolism reprogramming between aging flies and a Drosophila model relevant to Alzheimer's disease, and found that overexpression of human Tau caused methionine metabolism flux reprogramming similar to the changes found in aged flies. Altogether, our study highlights Methioninase as a potential agent for health- and lifespan extension.


Asunto(s)
Drosophila/genética , Longevidad/genética , Metionina/genética , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Aminoácidos/genética , Animales , Animales Modificados Genéticamente/genética , Liasas de Carbono-Azufre/genética , Alimentos , Humanos , Modelos Genéticos
6.
Cell Rep ; 36(7): 109553, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34407411

RESUMEN

yki-induced gut tumors in Drosophila are associated with host wasting, including muscle dysfunction, lipid loss, and hyperglycemia, a condition reminiscent of human cancer cachexia. We previously used this model to identify tumor-derived ligands that contribute to host wasting. To identify additional molecular networks involved in host-tumor interactions, we develop PathON, a web-based tool analyzing the major signaling pathways in Drosophila, and uncover the Upd3/Jak/Stat axis as an important modulator. We find that yki-gut tumors secrete Upd3 to promote self-overproliferation and enhance Jak/Stat signaling in host organs to cause wasting, including muscle dysfunction, lipid loss, and hyperglycemia. We further reveal that Upd3/Jak/Stat signaling in the host organs directly triggers the expression of ImpL2, an antagonistic binding protein for insulin-like peptides, to impair insulin signaling and energy balance. Altogether, our results demonstrate that yki-gut tumors produce a Jak/Stat pathway ligand, Upd3, that regulates both self-growth and host wasting.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Proliferación Celular , Cuerpo Adiposo/metabolismo , Homeostasis , Insulina/metabolismo , Intestinos/citología , Quinasas Janus/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Músculos/fisiopatología , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células Madre/metabolismo
7.
PLoS One ; 16(5): e0252252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34015029

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0152259.].

8.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649236

RESUMEN

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metiltransferasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Metilación , Metiltransferasas/genética , Receptores Nucleares Huérfanos , Estabilidad del ARN , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética
9.
PLoS Genet ; 17(2): e1009354, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591981

RESUMEN

The RB1 tumor suppressor is recurrently mutated in a variety of cancers including retinoblastomas, small cell lung cancers, triple-negative breast cancers, prostate cancers, and osteosarcomas. Finding new synthetic lethal (SL) interactions with RB1 could lead to new approaches to treating cancers with inactivated RB1. We identified 95 SL partners of RB1 based on a Drosophila screen for genetic modifiers of the eye phenotype caused by defects in the RB1 ortholog, Rbf1. We validated 38 mammalian orthologs of Rbf1 modifiers as RB1 SL partners in human cancer cell lines with defective RB1 alleles. We further show that for many of the RB1 SL genes validated in human cancer cell lines, low activity of the SL gene in human tumors, when concurrent with low levels of RB1 was associated with improved patient survival. We investigated higher order combinatorial gene interactions by creating a novel Drosophila cancer model with co-occurring Rbf1, Pten and Ras mutations, and found that targeting RB1 SL genes in this background suppressed the dramatic tumor growth and rescued fly survival whilst having minimal effects on wild-type cells. Finally, we found that drugs targeting the identified RB1 interacting genes/pathways, such as UNC3230, PYR-41, TAK-243, isoginkgetin, madrasin, and celastrol also elicit SL in human cancer cell lines. In summary, we identified several high confidence, evolutionarily conserved, novel targets for RB1-deficient cells that may be further adapted for the treatment of human cancer.


Asunto(s)
Neoplasias/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Empalme del ARN , Proteína de Retinoblastoma/genética , Transducción de Señal , Ubiquitina/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Interferencia de ARN , Proteína de Retinoblastoma/deficiencia , Proteína de Retinoblastoma/metabolismo , Especificidad de la Especie , Análisis de Supervivencia , Mutaciones Letales Sintéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319750

RESUMEN

Aging is characterized by extensive metabolic reprogramming. To identify metabolic pathways associated with aging, we analyzed age-dependent changes in the metabolomes of long-lived Drosophila melanogaster. Among the metabolites that changed, levels of tyrosine were increased with age in long-lived flies. We demonstrate that the levels of enzymes in the tyrosine degradation pathway increase with age in wild-type flies. Whole-body and neuronal-specific downregulation of enzymes in the tyrosine degradation pathway significantly extends Drosophila lifespan, causes alterations of metabolites associated with increased lifespan, and upregulates the levels of tyrosine-derived neuromediators. Moreover, feeding wild-type flies with tyrosine increased their lifespan. Mechanistically, we show that suppression of ETC complex I drives the upregulation of enzymes in the tyrosine degradation pathway, an effect that can be rescued by tigecycline, an FDA-approved drug that specifically suppresses mitochondrial translation. In addition, tyrosine supplementation partially rescued lifespan of flies with ETC complex I suppression. Altogether, our study highlights the tyrosine degradation pathway as a regulator of longevity.


Asunto(s)
Envejecimiento/efectos de los fármacos , Longevidad/fisiología , Tirosina Transaminasa/metabolismo , Tirosina/metabolismo , Tirosina/farmacología , Animales , Drosophila melanogaster/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/efectos de los fármacos , Longevidad/efectos de los fármacos , Mitocondrias/metabolismo , Tigeciclina/farmacología , Tirosina/análisis
11.
J Cell Biol ; 218(10): 3397-3414, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31409654

RESUMEN

The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.


Asunto(s)
Uniones Adherentes/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Miosinas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Células Cultivadas , Drosophila , Femenino , Células HEK293 , Células HeLa , Humanos
12.
Elife ; 82019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31140975

RESUMEN

Fluorescent transcriptional reporters are widely used as signaling reporters and biomarkers to monitor pathway activities and determine cell type identities. However, a large amount of dynamic information is lost due to the long half-life of the fluorescent proteins. To better detect dynamics, fluorescent transcriptional reporters can be destabilized to shorten their half-lives. However, applications of this approach in vivo are limited due to significant reduction of signal intensities. To overcome this limitation, we enhanced translation of a destabilized fluorescent protein and demonstrate the advantages of this approach by characterizing spatio-temporal changes of transcriptional activities in Drosophila. In addition, by combining a fast-folding destabilized fluorescent protein and a slow-folding long-lived fluorescent protein, we generated a dual-color transcriptional timer that provides spatio-temporal information about signaling pathway activities. Finally, we demonstrate the use of this transcriptional timer to identify new genes with dynamic expression patterns.


Asunto(s)
Regulación de la Expresión Génica , Transcripción Genética , Animales , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Intestinos/citología , Biosíntesis de Proteínas , Receptores Notch/metabolismo , Factores de Transcripción STAT/metabolismo , Células Madre/citología
13.
Dev Cell ; 48(2): 277-286.e6, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30639055

RESUMEN

Interactions between tumors and host tissues play essential roles in tumor-induced systemic wasting and cancer cachexia, including muscle wasting and lipid loss. However, the pathogenic molecular mechanisms of wasting are still poorly understood. Using a fly model of tumor-induced organ wasting, we observed aberrant MEK activation in both tumors and host tissues of flies bearing gut-yki3SA tumors. We found that host MEK activation results in muscle wasting and lipid loss, while tumor MEK activation is required for tumor growth. Strikingly, host MEK suppression alone is sufficient to abolish the wasting phenotypes without affecting tumor growth. We further uncovered that yki3SA tumors produce the vein (vn) ligand to trigger autonomous Egfr/MEK-induced tumor growth and produce the PDGF- and VEGF-related factor 1 (Pvf1) ligand to non-autonomously activate host Pvr/MEK signaling and wasting. Altogether, our results demonstrate the essential roles and molecular mechanisms of differential MEK activation in tumor-induced host wasting.


Asunto(s)
Caquexia/metabolismo , Ligandos , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Receptores ErbB/metabolismo , Ratones , Músculo Esquelético/metabolismo , Fosforilación
14.
Genes Dev ; 30(12): 1409-22, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27313316

RESUMEN

Aging is a risk factor for many human pathologies and is characterized by extensive metabolic changes. Using targeted high-throughput metabolite profiling in Drosophila melanogaster at different ages, we demonstrate that methionine metabolism changes strikingly during aging. Methionine generates the methyl donor S-adenosyl-methionine (SAM), which is converted via methylation to S-adenosyl-homocysteine (SAH), which accumulates during aging. A targeted RNAi screen against methionine pathway components revealed significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy (S-adenosyl-L-homocysteine hydrolase [SAHH[), CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Importantly, tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Furthermore, metabolomic analysis of dAhcyL1-deficient flies revealed its effect on age-dependent metabolic reprogramming and H3K4 methylation. Altogether, reprogramming of methionine metabolism in young flies and suppression of age-dependent SAH accumulation lead to increased life span. These studies highlight the role of noncanonical Ahcy enzymes as determinants of healthy aging and longevity.


Asunto(s)
Envejecimiento/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Longevidad/genética , Animales , Encéfalo/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Femenino , Heterocromatina/genética , Intestinos/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Metionina/metabolismo , Metilación , S-Adenosilhomocisteína
15.
PLoS One ; 11(3): e0152259, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27015411

RESUMEN

The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Ojo/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Unión al GTP rho/genética , Animales , Proteínas de Ciclo Celular , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/biosíntesis , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Mutación , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Proteínas de Unión al GTP rho/biosíntesis
16.
Dev Biol ; 411(2): 207-216, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26845534

RESUMEN

Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis.


Asunto(s)
Células Madre Adultas/citología , Drosophila melanogaster/citología , Proteínas Proto-Oncogénicas c-raf/genética , Animales , Apoptosis , Autofagia , Caspasas/metabolismo , Diferenciación Celular , Proliferación Celular , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Etiquetado Corte-Fin in Situ , Neoplasias Intestinales/metabolismo , Microscopía Fluorescente , Mitocondrias/metabolismo , Oligomicinas/química , Proteínas Proto-Oncogénicas c-raf/metabolismo
17.
Genetics ; 201(3): 843-52, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26320097

RESUMEN

To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China).


Asunto(s)
Drosophila/genética , Interferencia de ARN , Acceso a la Información , Animales , Animales Modificados Genéticamente , Investigación Biomédica , Boston , Genes de Insecto , Vectores Genéticos , Facultades de Medicina
18.
Nat Commun ; 6: 7279, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26081261

RESUMEN

Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4-8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes.


Asunto(s)
Drosophila/genética , MicroARNs/antagonistas & inhibidores , Animales , Animales Modificados Genéticamente , Drosophila/metabolismo , Femenino , Biblioteca de Genes , Masculino , MicroARNs/metabolismo , Músculos/metabolismo
19.
Dev Cell ; 31(1): 114-27, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25284370

RESUMEN

Connecting phosphorylation events to kinases and phosphatases is key to understanding the molecular organization and signaling dynamics of networks. We have generated a validated set of transgenic RNA-interference reagents for knockdown and characterization of all protein kinases and phosphatases present during early Drosophila melanogaster development. These genetic tools enable collection of sufficient quantities of embryos depleted of single gene products for proteomics. As a demonstration of an application of the collection, we have used multiplexed isobaric labeling for quantitative proteomics to derive global phosphorylation signatures associated with kinase-depleted embryos to systematically link phosphosites with relevant kinases. We demonstrate how this strategy uncovers kinase consensus motifs and prioritizes phosphoproteins for kinase target validation. We validate this approach by providing auxiliary evidence for Wee kinase-directed regulation of the chromatin regulator Stonewall. Further, we show how correlative phosphorylation at the site level can indicate function, as exemplified by Sterile20-like kinase-dependent regulation of Stat92E.


Asunto(s)
Drosophila/genética , Redes Reguladoras de Genes , Fosfoproteínas Fosfatasas/genética , Proteínas Quinasas/genética , Proteoma/genética , Animales , Drosophila/embriología , Drosophila/enzimología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Proteoma/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(13): 4756-63, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24623854

RESUMEN

Chimaeras, fanciful beasts that drew their force from being composed of parts of disparate animals, have stimulated our collective imagination for centuries. In modern terms, chimaeras are composite animals consisting of genetically distinct cell populations and are called "mosaics" if the different cell types have emerged from the same zygote. Phenotypic studies of chimeric animals formed from invertebrates, amphibians, birds, and mammals have provided many fundamental insights into biological processes, most notably in developmental biology. Many methods for generating both chimaeras and a range of markers for tracing their lineages have been developed over the years. Our laboratory has been intimately involved in the development of methods that facilitate the creation of genetic mosaics in Drosophila. Here, we review our contributions to the development of this field and discuss a number of approaches that will improve further the tool kit for generating mosaic animals.


Asunto(s)
Drosophila/genética , Técnicas Genéticas , Mosaicismo , Animales , Células Clonales , Mitosis/genética , Recombinación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...