Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(17): 8603-8608, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948632

RESUMEN

The members of the phytochrome (phy) family of bilin-containing photoreceptors are major regulators of plant photomorphogenesis through their unique ability to photointerconvert between a biologically inactive red light-absorbing Pr state and an active far-red light-absorbing Pfr state. While the initial steps in Pfr signaling are unclear, an early event for the phyB isoform after photoconversion is its redistribution from the cytoplasm into subnuclear foci known as photobodies (PBs), which dissipate after Pfr reverts back to Pr by far-red irradiation or by temperature-dependent nonphotochemical reversion. Here we present evidence that PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) functions both as an essential structural component of phyB-containing PBs and as a direct regulator of thermal reversion that is sufficient to stabilize phyB as Pfr in vitro. By examining the genetic interaction between a constitutively active phyBY276H-YFP allele (YHB-YFP) and PCH1, we show that the loss of PCH1 prevents YHB from coalescing into PBs without affecting its nuclear localization, whereas overexpression of PCH1 dramatically increases PB levels. Loss of PCH1, presumably by impacting phyB-PB assembly, compromises a number of events elicited in YHB-YFP plants, including their constitutive photomorphogenic phenotype, red light-regulated thermomorphogenesis, and input of phyB into the circadian clock. Conversely, elevated levels of both phyB and PCH1 generate stable, yet far-red light-reversible PBs that persisted for days. Collectively, our data demonstrate that the assembly of PCH1-containing PBs is critical for phyB signaling to multiple outputs and suggest that altering PB dynamics could be exploited to modulate plant responses to light and temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Proteínas F-Box , Fitocromo B/metabolismo , Factores de Transcripción , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
2.
Plant Cell Environ ; 41(10): 2263-2276, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29520929

RESUMEN

The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON-REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3-mediated shoot-to-root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue-specific localization of OPT3, together with other Fe-responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.


Asunto(s)
Arabidopsis/metabolismo , Hierro/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Floema/anatomía & histología , Floema/metabolismo , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Xilema/anatomía & histología , Xilema/metabolismo
3.
Plant Direct ; 1(4): e00018, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31245666

RESUMEN

Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana (Arabidopsis) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside of Arabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function of Brachypodium distachyon (Brachypodium) and Setaria viridis (Setaria) orthologs of EARLY FLOWERING 3, a key clock gene in Arabidopsis. To identify both cycling genes and putative ELF3 functional orthologs in Setaria, a circadian RNA-seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles of Setaria genes under circadian conditions. The function of ELF3 orthologs from Arabidopsis, Brachypodium, and Setaria was tested for complementation of an elf3 mutation in Arabidopsis. We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that BdELF3 and SvELF3 could be integrated into similar complexes in vivo as AtELF3. Thus, we find that, despite 180 million years of separation, BdELF3 and SvELF3 can functionally complement loss of ELF3 at the molecular and physiological level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...