Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 111(5): 1001-1007, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34622991

RESUMEN

The NF-κB transcription factor c-Rel plays a crucial role in promoting and regulating immune responses and inflammation. However, the function of c-Rel in modulating the mucosal immune system is poorly understood. T follicular helper (Tfh) cells and IgA production in gut-associated lymphoid tissues (GALT) such as Peyer's patches (PPs) are important for maintaining the intestinal homeostasis. Here, c-Rel was identified as an essential factor regulating intestinal IgA generation and function of Tfh cells. Genetic deletion of c-Rel resulted in the aberrant formation of germinal centers (GCs) in PPs, significantly reduced IgA generation and defective Tfh cell differentiation. Supporting these findings, the Ag-specific IgA response to Citrobacter rodentium was strongly impaired in c-Rel-deficient mice. Interestingly, an excessive expansion of segmented filamentous bacteria (SFB) was observed in the small intestine of animals lacking c-Rel. Yet, the production of IL-17A, IgA, and IL-21, which are induced by SFB, was impaired due to the lack of transcriptional control by c-Rel. Collectively, the transcriptional activity of c-Rel regulates Tfh cell function and IgA production in the gut, thus preserving the intestinal homeostasis.


Asunto(s)
Ganglios Linfáticos Agregados , Linfocitos T Colaboradores-Inductores , Animales , Bacterias , Comunicación , Inmunoglobulina A , Linfocitos , Ratones , Factores de Transcripción
2.
Gut Microbes ; 12(1): 1-17, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33079623

RESUMEN

Although it is generally accepted that dietary fiber is health promoting, the underlying immunological and molecular mechanisms are not well defined, especially with respect to cellulose, the most ubiquitous dietary fiber. Here, the impact of dietary cellulose on intestinal microbiota, immune responses and gene expression in health and disease was examined. Lack of dietary cellulose disrupted the age-related diversification of the intestinal microbiota, which subsequently remained in an immature state. Interestingly, one of the most affected microbial genera was Alistipes which is equipped with enzymes to degrade cellulose. Absence of cellulose changed the microbial metabolome, skewed intestinal immune responses toward inflammation, altered the gene expression of intestinal epithelial cells and mice showed increased sensitivity to colitis induction. In contrast, mice with a defined microbiota including A. finegoldii showed enhanced colonic expression of intestinal IL-22 and Reg3γ restoring intestinal barrier function. This study supports the epidemiological observations and adds a causal explanation for the health promoting effects of the most common biopolymer on earth.


Asunto(s)
Celulosa/metabolismo , Fibras de la Dieta/metabolismo , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/inmunología , Animales , Antiinflamatorios/metabolismo , Bacteroidetes/metabolismo , Colitis/patología , Inflamación/patología , Interleucinas/biosíntesis , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Pancreatitis/biosíntesis , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...