Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7321, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951946

RESUMEN

The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn5Ge3 hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the c-axis with an applied magnetic field. Hence, Mn5Ge3 realizes a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons. More generally, our experimental route to verify and control the topological character of the magnons is applicable to bulk centrosymmetric hexagonal materials, which calls for systematic investigation.

2.
Sci Rep ; 12(1): 20483, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443339

RESUMEN

The interplay between structural and electronic degrees of freedom in complex materials is the subject of extensive debate in physics and materials science. Particularly interesting questions pertain to the nature and extent of pre-transitional short-range order in diverse systems ranging from shape-memory alloys to unconventional superconductors, and how this microstructure affects macroscopic properties. Here we use neutron and X-ray diffuse scattering to uncover universal structural fluctuations in La2-xSrxCuO4 and Tl2Ba2CuO6+δ, two cuprate superconductors with distinct point disorder effects and with optimal superconducting transition temperatures that differ by more than a factor of two. The fluctuations are present in wide doping and temperature ranges, including compositions that maintain high average structural symmetry, and they exhibit unusual, yet simple scaling behaviour. The scaling regime is robust and universal, similar to the well-known critical fluctuations close to second-order phase transitions, but with a distinctly different physical origin. We relate this behaviour to pre-transitional phenomena in a broad class of systems with structural and magnetic transitions, and propose an explanation based on rare structural fluctuations caused by intrinsic nanoscale inhomogeneity. We also uncover parallels with superconducting fluctuations, which indicates that the underlying inhomogeneity plays an important role in cuprate physics.

3.
Phys Rev Lett ; 120(25): 257205, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29979049

RESUMEN

Inelastic neutron scattering measurements are performed on single crystals of the antiferromagnetic compound Mn_{5}Si_{3} in order to investigate the relation between the spin dynamics and the magnetothermodynamics properties. It is shown that, among the two stable antiferromagnetic phases of this compound, the high temperature one has an unusual magnetic excitation spectrum where propagative spin waves and diffuse spin fluctuations coexist. Moreover, it is evidenced that the inverse magnetocaloric effect of Mn_{5}Si_{3}, the cooling by adiabatic magnetization, is associated with field induced spin fluctuations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...