Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0300672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743725

RESUMEN

The larynx undergoes significant age and sex-related changes in structure and function across the lifespan. Emerging evidence suggests that laryngeal microbiota influences immunological processes. Thus, there is a critical need to delineate microbial mechanisms that may underlie laryngeal physiological and immunological changes. As a first step, the present study explored potential age and sex-related changes in the laryngeal microbiota across the lifespan in a murine model. We compared laryngeal microbial profiles of mice across the lifespan (adolescents, young adults, older adults and elderly) to determine age and sex-related microbial variation on 16s rRNA gene sequencing. Measures of alpha diversity and beta diversity were obtained, along with differentially abundant taxa across age groups and biological sexes. There was relative stability of the laryngeal microbiota within each age group and no significant bacterial compositional shift in the laryngeal microbiome across the lifespan. There was an abundance of short-chain fatty acid producing bacteria in the adolescent group, unique to the laryngeal microbiota; taxonomic changes in the elderly resembled that of the aged gut microbiome. There were no significant changes in the laryngeal microbiota relating to biological sex. This is the first study to report age and sex-related variation in laryngeal microbiota. This data lays the groundwork for defining how age-related microbial mechanisms may govern laryngeal health and disease. Bacterial compositional changes, as a result of environmental or systemic stimuli, may not only be indicative of laryngeal-specific metabolic and immunoregulatory processes, but may precede structural and functional age-related changes in laryngeal physiology.


Asunto(s)
Laringe , Microbiota , ARN Ribosómico 16S , Animales , Femenino , Masculino , Laringe/microbiología , Ratones , ARN Ribosómico 16S/genética , Factores de Edad , Envejecimiento/fisiología , Bacterias/clasificación , Bacterias/genética , Factores Sexuales , Ratones Endogámicos C57BL
2.
Biochem Biophys Rep ; 35: 101524, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37554427

RESUMEN

Chemokines are from a family of secreted cytokines that direct the trafficking of immune cells to coordinate immune responses. Chemokines are involved in numerous disease states, including responding to infections, autoimmune disorders, and cancer metastasis. Ther are chemokines, like CCL21, that signal for cellular migration through the activation of G protein-coupled receptors, like CCR7, through interaction with the receptor's extracellular N-terminus, loops, and core of the receptor. CCL21 is involved in routine immune surveillance but can also attract metastasizing cancer cells to lymph nodes. P-selectin glycoprotein ligand 1 (PSGL1) has a role in cellular adhesion during chemotaxis and is a transmembrane signaling molecule. PSGL1 expression enhances chemotactic responses of T cells to CCL21. Here NMR studies indicate the binding sites on CCL21 for the N-termini or PSGL1 and CCR7 overlap, and binding of the N-termini of PSGL1 and CCR7 is competitive.

3.
Plant Physiol ; 138(3): 1310-7, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16010005

RESUMEN

The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma de Planta , Solanaceae/genética , Arabidopsis/genética , Capsicum/genética , Biología Computacional/métodos , ADN de Plantas/genética , Almacenamiento y Recuperación de la Información , Solanum lycopersicum/genética , Solanum melongena/genética , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...