Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(19): 191001, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000434

RESUMEN

Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter with a total depth of 30 radiation lengths at normal incidence and a fine shower imaging capability, is optimized to measure the all-electron spectrum well into the TeV region. Because of the excellent energy resolution (a few percent above 10 GeV) and the outstanding e/p separation (10^{5}), CALET provides optimal performance for a detailed search of structures in the energy spectrum. The analysis uses data up to the end of 2022, and the statistics of observed electron candidates has increased more than 3 times since the last publication in 2018. By adopting an updated boosted decision tree analysis, a sufficient proton rejection power up to 7.5 TeV is achieved, with a residual proton contamination less than 10%. The observed energy spectrum becomes gradually harder in the lower energy region from around 30 GeV, consistently with AMS-02, but from 300 to 600 GeV it is considerably softer than the spectra measured by DAMPE and Fermi-LAT. At high energies, the spectrum presents a sharp break around 1 TeV, with a spectral index change from -3.15 to -3.91, and a broken power law fitting the data in the energy range from 30 GeV to 4.8 TeV better than a single power law with 6.9 sigma significance, which is compatible with the DAMPE results. The break is consistent with the expected effects of radiation loss during the propagation from distant sources (except the highest energy bin). We have fitted the spectrum with a model consistent with the positron flux measured by AMS-02 below 1 TeV and interpreted the electron+positron spectrum with possible contributions from pulsars and nearby sources. Above 4.8 TeV, a possible contribution from known nearby supernova remnants, including Vela, is addressed by an event-by-event analysis providing a higher proton-rejection power than a purely statistical analysis.

3.
Phys Rev Lett ; 130(21): 211001, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295105

RESUMEN

We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model" of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.


Asunto(s)
Radiación Cósmica , Vuelo Espacial , Telescopios , Protones , Electrones
4.
Phys Rev Lett ; 130(17): 171002, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172251

RESUMEN

We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit. The measured spectrum shows evidence of a deviation of the flux from a single power law by more than 8σ with a progressive spectral hardening from a few hundred GeV to a few tens of TeV. This result is consistent with the data reported by space instruments including PAMELA, AMS-02, and DAMPE and balloon instruments including CREAM. At higher energy we report the onset of a softening of the helium spectrum around 30 TeV (total kinetic energy). Though affected by large uncertainties in the highest energy bins, the observation of a flux reduction turns out to be consistent with the most recent results of DAMPE. A double broken power law is found to fit simultaneously both spectral features: the hardening (at lower energy) and the softening (at higher energy). A measurement of the proton to helium flux ratio in the energy range from 60 GeV/n to about 60 TeV/n is also presented, using the CALET proton flux recently updated with higher statistics.

5.
Phys Rev Lett ; 129(10): 101102, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36112450

RESUMEN

A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.2. Above a few hundred GeV we confirm our previous observation of a progressive spectral hardening with a higher significance (more than 20 sigma). In the multi-TeV region we observe a second spectral feature with a softening around 10 TeV and a spectral index change from -2.6 to -2.9 consistently, within the errors, with the shape of the spectrum reported by DAMPE. We apply a simultaneous fit of the proton differential spectrum which well reproduces the gradual change of the spectral index encompassing the lower energy power-law regime and the two spectral features observed at higher energies.

6.
Phys Rev Lett ; 128(13): 131103, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35426700

RESUMEN

The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

7.
Phys Rev Lett ; 129(25): 251103, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36608255

RESUMEN

We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E_{0}∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25

8.
Phys Rev Lett ; 126(24): 241101, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213922

RESUMEN

The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.

9.
Phys Rev Lett ; 126(7): 071103, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666466

RESUMEN

ANITA's fourth long-duration balloon flight in 2016 detected 29 cosmic-ray (CR)-like events on a background of 0.37_{-0.17}^{+0.27} anthropogenic events. CRs are mainly seen in reflection off the Antarctic ice sheets, creating a phase-inverted waveform polarity. However, four of the below-horizon CR-like events show anomalous noninverted polarity, a p=5.3×10^{-4} chance if due to background. All anomalous events are from locations near the horizon; ANITA-IV observed no steeply upcoming anomalous events similar to the two such events seen in prior flights.

10.
Phys Rev Lett ; 125(25): 251102, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416351

RESUMEN

In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.2 TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200 GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25 GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.

11.
Phys Rev Lett ; 122(18): 181102, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144869

RESUMEN

In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from -2.81±0.03 (50-500 GeV) neglecting solar modulation effects (or -2.87±0.06 including solar modulation effects in the lower energy region) to -2.56±0.04 (1-10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3σ.

12.
Phys Rev Lett ; 121(16): 161102, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387639

RESUMEN

We report on an upward traveling, radio-detected cosmic-ray-like impulsive event with characteristics closely matching an extensive air shower. This event, observed in the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload, is consistent with a similar event reported in a previous flight. These events could be produced by the atmospheric decay of an upward-propagating τ lepton produced by a ν_{τ} interaction, although their relatively steep arrival angles create tension with the standard model neutrino cross section. Each of the two events have a posteriori background estimates of ≲10^{-2} events. If these are generated by τ-lepton decay, then either the charged-current ν_{τ} cross section is suppressed at EeV energies, or the events arise at moments when the peak flux of a transient neutrino source was much larger than the typical expected cosmogenic background neutrinos.

13.
Phys Rev Lett ; 120(26): 261102, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004739

RESUMEN

Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 X_{0} at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below ∼300 GeV, CALET's spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT), and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above ∼1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.

14.
Phys Rev Lett ; 119(18): 181101, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219544

RESUMEN

First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.

15.
Phys Rev Lett ; 117(7): 071101, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563945

RESUMEN

We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section.

16.
Science ; 352(6286): 677-80, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27103666

RESUMEN

Iron-60 ((60)Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 × 10(5) iron nuclei, with energies ~195 to ~500 mega-electron volts per nucleon, of which we identify 15 (60)Fe nuclei. The (60)Fe/(56)Fe source ratio is (7.5 ± 2.9) × 10(-5) The detection of supernova-produced (60)Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the (60)Fe half-life of 2.6 million years and that the (60)Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, ⪍1 kiloparsec. A natural place for (60)Fe origin is in nearby clusters of massive stars.

17.
Phys Rev Lett ; 105(15): 151101, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-21230887

RESUMEN

We report the observation of 16 cosmic ray events with a mean energy of 1.5 × 10¹9 eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2° for the event arrival directions.

18.
Phys Rev Lett ; 103(5): 051103, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19792479

RESUMEN

We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) approximately 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

19.
Phys Rev Lett ; 99(17): 171101, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17995315

RESUMEN

We report on observations of coherent, impulsive radio Cherenkov radiation from electromagnetic showers in solid ice. This is the first observation of the Askaryan effect in ice. As part of the complete validation process for the ANITA experiment, we performed an experiment at the Stanford Linear Accelerator Center in June 2006 using a 7.5 metric ton ice target. We measure for the first time the large-scale angular dependence of the radiation pattern, a major factor in determining the solid-angle acceptance of ultrahigh-energy neutrino detectors.

20.
Phys Rev Lett ; 96(17): 171101, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16712284

RESUMEN

We report new limits on cosmic neutrino fluxes from the test flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment, which completed an 18.4 day flight of a prototype long-duration balloon payload, called ANITA-lite, in early 2004. We search for impulsive events that could be associated with ultrahigh energy neutrino interactions in the ice and derive limits that constrain several models for ultrahigh energy neutrino fluxes and rule out the long-standing -burst model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...