Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 14(1): 120-141, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37934001

RESUMEN

Failure of adoptive T-cell therapies in patients with cancer is linked to limited T-cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. We show here that BBz-CAR T-cell stem/memory differentiation and persistence can be enhanced through epigenetic manipulation of the histone 3 lysine 9 trimethylation (H3K9me3) pathway. Inactivation of the H3K9 trimethyltransferase SUV39H1 enhances BBz-CAR T cell long-term persistence, protecting mice against tumor relapses and rechallenges in lung and disseminated solid tumor models up to several months after CAR T-cell infusion. Single-cell transcriptomic (single-cell RNA sequencing) and chromatin opening (single-cell assay for transposase accessible chromatin) analyses of tumor-infiltrating CAR T cells show early reprogramming into self-renewing, stemlike populations with decreased expression of dysfunction genes in all T-cell subpopulations. Therefore, epigenetic manipulation of H3K9 methylation by SUV39H1 optimizes the long-term functional persistence of BBz-CAR T cells, limiting relapses, and providing protection against tumor rechallenges. SIGNIFICANCE: Limited CAR T-cell expansion and persistence hinders therapeutic responses in solid cancer patients. We show that targeting SUV39H1 histone methyltransferase enhances 41BB-based CAR T-cell long-term protection against tumor relapses and rechallenges by increasing stemness/memory differentiation. This opens a safe path to enhancing adoptive cell therapies for solid tumors. See related article by Jain et al., p. 142. This article is featured in Selected Articles from This Issue, p. 5.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Cromatina , Inmunoterapia Adoptiva , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neoplasias/genética , Neoplasias/terapia , Recurrencia , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 48, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945066

RESUMEN

Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.Lys12134*. Muscle biopsies showed increased internalized nuclei, variability in fiber size, mild fibrosis, type 1 fiber predominance, and a slight increase in the number of satellite cells. RNA studies revealed the retention of intron 170 and 171 in the open reading frame, and immunoflourescence and western blot studies, a normal titin content. Single fiber functional studies showed a slight decrease in absolute maximal force and a cross-sectional area with no decreases in tension, suggesting that weakness is not sarcomere-based but due to hypotrophy. Passive properties of single fibers were not affected, but the observed increased calcium sensitivity of force generation might contribute to the contractural phenotype and rigid spine of the patient. Our findings provide evidence for a pathogenic, causative role of a metatranscript-only titin variant in a long survivor congenital titinopathy patient with distal arthrogryposis and rigid spine.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Conectina/genética , Conectina/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Sarcómeros/metabolismo , Fenotipo
3.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34401916

RESUMEN

Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation-contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation-contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.


Asunto(s)
Cardiomiopatía Dilatada , Elementos Transponibles de ADN , Empalme Alternativo/genética , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Conectina/genética , Conectina/metabolismo , Ratones , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Sarcómeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA