Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402165, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925585

RESUMEN

Post Synthetic Modification (PSM) of Metal-Organic Frameworks (MOFs) is a crucial strategy for developing new MOFs with enhanced functional properties compared to their parent one. PSM can be accomplished through various methods:1) modification of organic linkers; 2) exchange of metal ions or nodes; and 3) inclusion or exchange of solvent/guest molecules. Herein, PSM of bimetallic and monometallic MOFs containing biphenyl dinitro-tetra-carboxylates (NCA) are demonstrated. The tetra carboxylate NCA, produces monometallic Cd-MOF-1 and Cu-MOF-1 and bimetallic CoZn-MOF in solvothermal reactions with the corresponding metal salts. The CoZn-MOF undergoes post-synthetic transmetallation with Cd(NO3)2 and Cu(NO3)2 in aqueous solution to yield Cd-MOF-2 and Cu-MOF-2, respectively. Additionally, green crystals of Cu-MOF-1 found to undergo a single-crystal-to-single-crystal (SCSC) transformation to blue crystals of Cu-MOF-3 upon dipped into water at room temperature. These MOFs demonstrate notable proton conductivities ranging from 10-3 to 10-4 S cm-1 under variable temperatures and humidity levels. Among them, Cu-MOF-3 achieves the highest proton conductivity of 1.36 × 10-3 S cm-1 at 90 °C and 98% relative humidity, attributed to its continuous and extensive hydrogen bonding network, which provides effective proton conduction pathways within the MOF. This work highlights a convenient strategy for designing proton-conducting MOFs via post-synthetic modification.

2.
ChemistryOpen ; : e202400110, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738745

RESUMEN

Catalytic transformation of CO2 into value-added chemical products can provide an appropriate solution for the raising environmental issues. To date, various metal-organic frameworks (MOFs) with transition metal ions have been explored for CO2 capture and conversion, but alkaline earth metal-based MOFs are comparatively less studied. Metal ions like Sr(II) having relatively large radius give rise to a high coordination number resulting in higher stability of the MOFs. Moreover, the introduction of N-rich functional group in organic linker like -NH2, -CONH- and triazole into MOF backbone enhance their CO2 capture and conversion efficiency. Herein, the effect of amine group on the catalytic efficiency of MOFs for CO2 cycloaddition with epoxides under solvent free and ambient conditions are presented. The di-carboxylates, such as 5-aminoisophthalate (AmIP) and 5-bromoisophthalate (BrIP) were utilized to synthesize Sr(II) based MOFs. The Zn(II) MOF was synthesized using tetra-carboxylate containing amide spacer (OAT) and 4-amino-4H-1,2,4-triazole (AMT). All three MOFs exhibited porous networks with guest available volume ranging from 15 to 58 %. The catalytic efficiency of the MOFs towards carbon dioxide fixation reaction was explored. The catalytic performances revealed that the presence of amine group in the channels enhances the catalytic efficiency of the MOFs.

3.
Inorg Chem ; 63(16): 7303-7313, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38597285

RESUMEN

The in situ solvothermal conversion of metal-organic gels (MOGs) to crystalline metal-organic frameworks (MOFs) represents a versatile and ingenious strategy that has been employed for the synthesis of MOF materials with specific morphologies, high yield, and improved functional properties. Herein, we have adopted an in situ solvothermal conversion of bimetallic MOGs to crystalline bimetallic MOFs with the aim of introducing a redox-active metal heterogeneity into the monometallic counterpart. The formation of bimetallic NiZn-MOF and CoZn-MOF via in situ solvothermal sol-gel-crystal and sol-crystal transformation is found to depend on the solvent systems used. The sol-to-gel-to-crystal transformation of NiZn-MOF via the formation of NiZn-MOG is found to occur through the gradual disruption of gel fibers leading to subsequent formation of microcrystals and single crystals of NiZn-MOF. These bimetallic MOFs and MOGs serve as promising electrocatalysts for oxygen reduction reaction (ORR) with an excellent methanol tolerance property, which can be attributed to the enhanced mass and charge transfer, higher oxygen vacancies, and bimetallic synergistic interactions among the heterometals. This work demonstrates a convenient strategy for producing bimetallic MOGs to MOFs through the introduction of a redox-active metal heterogeneity in the inorganic hybrid functional materials for fundamental and applied research. Our results connect MOGs and MOFs which have been regarded as having opposite physical states, that is, soft vs hard, and provide promising structural correlation between MOGs and MOFs at the molecular level.

4.
Dalton Trans ; 53(10): 4797-4804, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372160

RESUMEN

Herein, the first report on gel-to-gel transformations via [2 + 2] photopolymerization in MOGs of metal halides and rigid dienes is presented. The MOGs and their xerogels show exceptional ability to undergo [2 + 2] polymerisation upon UV irradiation. Gel-to-gel transformations are very rare as the post-modification of gelators weakens the gel and transforms it to a sol. Such transformations change the molecular assemblies into gels with altered mechanical and chemical properties. These phenomena pave the way to synthesize new MOGs with improved rigidity that cannot be synthesized otherwise.

5.
Soft Matter ; 20(11): 2568-2574, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38411472

RESUMEN

Supramolecular gels have an extensive range of potential applications, out of which stimuli-responsive materials are a topic of contemporary research. Gels being kinetically entrapped materials can be tuned to different forms using external chemical stimuli. In this context, three different triazine gelators, each containing a unique end group, were examined for gelation in various solvent systems. Nevertheless, the gelation was limited to only alcoholic solvents, suggesting that the hydrogen bonds between the gelating solvent and gelator play a crucial role in gelation. Further, it was found that these gelators could gelate only with aliphatic alcohols, which could be degelled easily using aromatic alcohols. The three gelators exhibited distinct gelation of aliphatic alcohols based on their end groups. The gelator with the polar-aromatic end group (C5H4N) was found to gelate with lighter alcohols, whereas that with the nonpolar aromatic end group (C6H5) was found to prefer higher alcohols. The MGC and Tgel values were also found to depend on the alkyl chain length/branching of the alcohols. The crystal structure of one of the gelators provides insights into the model structure of the gels. Cyclohexanol was the only solvent that could produce gels with all three of the as-synthesised gelators. The process of degelation by aromatic alcohols was monitored at different points of the disassembly process by rheological and morphological measurements to understand the extent of controlled degelation. These gels have great potential for use in controlled drug delivery and chemical sensing, among other areas.

6.
Chem Commun (Camb) ; 58(81): 11414-11417, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131685

RESUMEN

Herein, we report in situ transformation of a metal-organic gel (MOG) to a crystalline metal-organic framework (MOF) and solvent-dependent gelation/crystallization via solvothermal reactions of a tetracarboxylic acid, namely 4,4'-dinitro-2,2',6,6'-tetracarboxybiphenyl, and ZnSO4. The results provide structural insights into MOGs at the molecular level and also help in the synthesis of crystalline MOFs that are otherwise difficult to obtain.

7.
ACS Appl Mater Interfaces ; 14(26): 29722-29734, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35735143

RESUMEN

The design of highly efficient, cost-effective non-noble metal-based electrocatalysts with superior stability for overall water splitting (OWS) reactions is of great importance as well as of immense challenge for the upcoming sustainable and green energy conversion technologies. Herein, a convenient and simple in situ solvothermal method has been adopted to fabricate a self-supported, binder-free 3D electrode (Mn-MOF/NF) by the direct growth of a newly synthesized carboxylate-based pristine Mn(II)-metal-organic framework (Mn-MOF) upon the conducting substrate nickel foam (NF). The binder-free Mn-MOF/NF electrode exhibits excellent performances toward OWS with ultralow overpotentials of 280 mV@20 mA cm-2 for the oxygen evolution reaction (OER) and 125 mV@10 mA cm-2 for the hydrogen evolution reaction (HER) with remarkable durability. Mn-MOF/NF can also attain a current density of 10 mA cm-2 with a low cell voltage of 1.68 V in a 0.1 M KOH solution in a two-electrode system for OWS. The direct growth of nonconducting electroactive Mn-MOF materials upon conducting substrate NF provides an excellent mass transport of the electrolyte with a relatively low contact resistance due to the strong catalyst-substrate contact and enhances the efficient electron transport for OWS. The redox chemical etching of the self-sacrificial substrate NF during solvothermal synthesis introduces redox-active Ni2+ in Mn-MOF/NF. Thus, the excellent OWS electrocatalytic activity can mainly be attributed to the bimetallic synergistic collaboration of the two redox active metal centers (Mn2+ and Ni2+) along with the excellent support surface of NF, which provides a high specific surface area and maximum utilization of the electroactive metal ion sites by preventing the self-aggregation of the active sites. The Mn-MOF/NF electrode also exhibits superb stability and durability for a prolonged time throughout the multiple cycles of full water splitting reactions. Therefore, this work elucidates a convenient and smart approach for constructing MOF-based bifunctional electrocatalysts for OWS.

8.
Angew Chem Int Ed Engl ; 61(23): e202204141, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35334146

RESUMEN

The synthesis of reversible oligomer/polymers is fascinating both from the perspective of the fundamental understanding as well as their applications, ranging from biomedical to self-healing smart materials. On the other hand, the reactions that occur in single-crystal-to-single-crystal (SCSC) fashion offer great details of the structure, geometry and stereochemistry of the product. However, SCSC [2+2] oligomerization is rather difficult and rare. Further, till date there are no reports for a reversible [2+2] oligomerization in SCSC fashion. In this work, four halogen-substituted acrylic dienone molecules were deliberately designed and their ability to participate in [2+2] cycloaddition reaction in solid state was studied under visible light. Despite of having the required alignment of double bonds of dienes in all four crystal structures, they were found to exhibit variable reactivities given the differences in their weak intermolecular interactions such as halogen⋅⋅⋅halogen, halogen⋅⋅⋅π and C-H⋅⋅⋅O interactions. Notably, one of these materials exhibits reversible oligomerization in a SCSC manner.

9.
Chemistry ; 28(9): e202103830, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34936721

RESUMEN

Selective detection of H2 S in the cellular systems using fluorescent CPs/MOFs is of great scientific interest due to their outstanding aqueous stability, biocompatibility and real-time detection ability. Fabrication of such materials using complete biologically essential elements and applying them as an efficient biosensor is still quite challenging. In this context, two newly synthesized CPs containing biologically essential metal ion (Zn) and nitro/azido functional groups into the framework to sense extracellular and intracellular H2 S by reducing into respective amines are presented. The CP-1 containing the azide group acted as an efficient fluorescent turn-on probe with the lowest detection limit (7.2 µM) and shortest response time (30 s) among the Zn-based probes reported till date. Moreover, CP-1 exhibited green luminescence in live cells after imaging a very low concentration of H2 S, whereas the nitro analogue CP-2 could not detect the target analyte due to its framework disruption.


Asunto(s)
Colorantes Fluorescentes , Polímeros , Azidas , Luminiscencia , Zinc
10.
Dalton Trans ; 50(31): 10655-10673, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34286769

RESUMEN

Recent studies on proton conductivity using pristine MOFs and their composite materials have established an outstanding area of research owing to their potential applications for the development of high performance solid state proton conductors (SSPCs) and proton exchange membranes (PEMs) in fuel cells (FCs). MOFs, as crystalline organic and inorganic hybrid materials, provide a large number of degrees of freedom in their framework composition, coordination environment, and chemically functionalized pores for the targeted design of improved proton carriers, functioning over a wide range of temperature and humidity conditions. Herein, our efforts have been emphasized on fundamental principles and different design strategies to achieve enhanced proton conductivity with appropriate examples. We also have discussed the modification mechanism of MOF-composite materials and mixed matrix membranes for commercial applications in FCs. Thus, this review aims to direct readers' attention towards the design strategies and structure-property relationship for proton transport in MOFs.

11.
Chem Commun (Camb) ; 56(94): 14873-14876, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33174883

RESUMEN

A rarely porous Li-MOF (Li-AOIA) with surface area of 605 m2 g-1 was employed for the formation of an emerging class of solid-state lithium ion electrolytes. Infiltration of LiBF4 into Li-AOIA afforded Li-AOIA@BF4 with ionic conductivity of 1.09 × 10-5 S cm-1 at room temperature and an activation energy of 0.18 eV.

12.
Dalton Trans ; 49(39): 13744-13752, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32996983

RESUMEN

Two similar types of dienes, one rigid and the other flexible, were explored for their gel formation abilities with Ag(i) salts. The rigid and angular dienes have shown an exceptional ability for gel formation with silver salts of nitrate, triflate, tetrafluoro borate and hexafluorophosphate. These metal-organic gels (MOGs) and their xerogels are found to have an excellent ability to undergo the photochemical [2 + 2] polymerization reaction upon irradiation. The reactions were monitored, and the products were characterized via1H NMR and MALDI-TOF analyses. Further, the solid-state luminescence behaviour and the selective dye-sorption of the gels have been explored before and after the photo-polymerization reaction.

13.
Chem Commun (Camb) ; 56(74): 10824-10842, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32813757

RESUMEN

The efficiency of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in the process of electrochemical water oxidation will determine the competence for mass distributions of sustainable energy conversion technologies in the future. Recently, coordination polymers (CPs)/metal-organic frameworks (MOFs) have emerged as desirable hybrid materials for catalysing electrochemical energy conversion processes due to their unique advantages, such as crystalline porous structure, high surface area, and diverse and tunable chemical components. This feature article briefly summarizes the recent part of the fast growing literature on electrocatalysis by pristine MOF/CPs, MOF composites, as well as post-synthetically modified materials for HER, OER and overall water splitting reactions. The article highlights the contributions of various authors in this area and aims to provide a consolidated idea regarding the engineering strategies and composition-structure-activity relationships of these pristine CP based materials for such electrocatalytic applications.

14.
ACS Appl Mater Interfaces ; 12(30): 33679-33689, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32633480

RESUMEN

Earth-abundant transition-metal-based metal-organic frameworks (MOFs) are of immense interest for the development of efficient and durable heterogeneous water splitting electrocatalysts. This repot explores the design of two-dimensional (2D) MOFs with redox-active metal centers (Ni(II), Co(II), and Cu(II)) containing two types of electron-rich linkers such as bis(5-azabenzimidazole), linear L1 and angular L2, and aromatic dicarboxylates. The electron-rich linkers are considered to stabilize the higher oxidation state of the redox-active metal centers in the course of the electrocatalytic oxygen evolution reaction (OER) process. The 2D MOFs of L1 and L2 with Co(II) (1 and 3) and Ni(II) (2 and 4) have been produced via the conventional hydrothermal synthesis, while the MOFs of Cu(II) (Cu@1 and Cu@3) are obtained by the postsynthetic transmetallation reaction of MOFs 1 and 3. The electrocatalytic OER activities of the six MOFs have been studied to explore the influence of the redox potential of the transition-metal quasi-reversible couples and the coordination environment around the redox-active metal centers in the electrocatalytic activity. The lowest overpotential of 370 mV exhibited by MOF 2 with the highest current density and TOF value indicates the importance of the presence of coordinated water molecules and the lowest redox potential value of the most favorable quasi-reversible couple Ni+2/Ni+3. These catalysts exhibit a remarkable stability up to 1000 OER cycles. These studies pave the way for the design of MOF materials toward the development of a promising heterogeneous OER electrocatalyst.

15.
Phys Chem Chem Phys ; 22(8): 4731-4740, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32057048

RESUMEN

The origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals (BCLCs) is not understood clearly. There is no analysis of the photo-physical properties, in particular, the excited state dynamical behaviour, of these molecules. Because of the availability of two proton transfer sites in these systems, there is no clear explanation of the involvement of single or double proton transfer reactions in the origin of the large Stokes shifted green fluorescence band. Therefore, we employ the femtosecond transient absorption spectroscopy technique to recognize the formation of transient species in the excited state and its associated dynamics in the femto-picosecond time domain. In order to validate the experimental photo-physical properties, the time-dependent density functional theory (TDDFT) calculations have been performed. Our results indicate that the four-ring bent-core system is an excellent example of systems exhibiting two proton transfer reactions in a sequential process. Further, these two proton transfer sites are not electronically coupled to each other; therefore, monoketo and diketo tautomers exhibit very close absorption and emission positions. The large Stokes shifted green emission in these systems is mainly contributed by the monoketo tautomer (MK-C*). The linking ester functional group of both sites plays a significant role in controlling the rate of proton transfer reactions. A good correlation is observed between theoretical and experimental results.

16.
Chemistry ; 26(2): 396-400, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31589788

RESUMEN

The single crystals of two structural isomers of bis-olefinic molecules were shown to have contrasting properties in terms of their photoreactivity: one exhibits an excellent ability to form polymers, accompanied with bending of crystals upon irradiation, while the other is photostable. The photoreactive crystal is a first example in which [2+2] polymerization leads to bending of the crystals, with implications for the design of photoactuators. The hydrate formation ability of one of these molecular isomers promotes the solid-state reactivity in its crystal, as the H2 O molecules act as a template to bring the olefin molecules into the required arrangement for [2+2] polymerization. Further, the crystals of the polymer exhibited better flexibility and smoothed surfaces compared to those of the monomers. In addition, under UV-light the diene emits bluish violet light while the polymer emits green light, indicating that the luminescence property can be tuned through photoirradiation.

17.
Chem Asian J ; 14(23): 4389-4394, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31674149

RESUMEN

Coordination complexes of an olefinic molecule (PIP) containing pyridine and imidazopyridine moieties with ZnII /NiII metal salts were shown to exhibit appreciable proton conductivity. These complexes form 3D-hydrogen bonded frameworks containing rhomboidal channels that are occupied by uncoordinated 1,5-naphthalenedisulfonate (NDS). The extensive hydrogen bonding between the frameworks and NDS resulted in thermally stable and water-insoluble materials. Irrespective of the metal atom present, both complexes exhibited moderate to high proton conduction in the range of 10-5 to 0.5×10-3  S cm-1 depending on the temperature and humidity levels.

18.
Dalton Trans ; 48(47): 17456-17460, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31755494

RESUMEN

Two diene molecules were shown to undergo photopolymerization reactions in their metal-organic gels and xerogels, while their respective crystalline CPs are photostable. These reactions reveal the advantages of the gels and xerogels compared to their crystalline counterparts and also the utility of AgAg interactions in the gels to promote topochemical polymerizations.

19.
Chem Asian J ; 14(20): 3742-3747, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31531947

RESUMEN

Three CdII coordination polymers (CPs) were synthesized with a tripodal ligand N,N',N' '-tris(4-pyridinylmethyl)-1,3,5-benzenetricarboxamide in combination with three different substituted isophthalic acids with general formulas {[Cd2 (L)(NIP)2 (H2 O)2 ].4H2 O}n , (CP-1), {[Cd2 (L)(AIP)2 (H2 O)2 ].4H2 O}n , (CP-2) and {[Cd(L)(BIP) (H2 O)].4H2 O}n , (CP-3). The substituent groups on the co-ligand had profound effect on the network topologies of the corresponding CPs as well as their properties. Out of the three, CP-1 and 2 were found to form 3D networks whereas CP-3 was a 1D linear chain with uncoordinated pyridyl sites. Due to its structural features CP-3 was found to show interesting properties. The 1D CP containing uncoordinated pyridyl site exhibited an excellent ability for doping with CoII which in turn acts as an efficient water oxidation electrocatalyst with required overpotential of 380 mV for an anodic current density of 1 mA cm-2 . The CP also exhibited luminescence-based detection of nitroaromatics (LOD: 0.003 mm) without any significant interference in presence of other organic compounds.

20.
Chemistry ; 25(64): 14500-14505, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31489727

RESUMEN

The deliberate construction of isoreticular eea-metal-organic frameworks (MOFs) (Cu-eea-1, Cu-eea-2 and Cu-eea-3) and rtl-MOFs (Co-rtl-1 and Co-rtl-2) has been accomplished based on the ligand-to-axial pillaring of supermolecular building layers. The use of different metal ions resulted in two types of supermolecular building layers (SBLs): Kagome (kgm) and square lattices (sql) which further interconnect to form anticipated 3D-MOFs. The isoreticular expansion of (3,6)-connected Cu-MOFs has been achieved with desired eea-topology based on kgm building layers. In addition, two (3,6)-connected Co-rtl-MOFs were also successfully constructed based on sql building layers. The Cu-eea-MOFs were shown to act as hydrogen storage materials with appreciable amount of hydrogen uptake abilities. Moreover Cu-eea-MOFs have also exhibited remarkable CO2 capture ability at ambient condition compared to nitrogen and methane, due to the presence of amide functionalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...