Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 614, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696825

RESUMEN

AmeriFlux is a network of research sites that measure carbon, water, and energy fluxes between ecosystems and the atmosphere using the eddy covariance technique to study a variety of Earth science questions. AmeriFlux's diversity of ecosystems, instruments, and data-processing routines create challenges for data standardization, quality assurance, and sharing across the network. To address these challenges, the AmeriFlux Management Project (AMP) designed and implemented the BASE data-processing pipeline. The pipeline begins with data uploaded by the site teams, followed by the AMP team's quality assurance and quality control (QA/QC), ingestion of site metadata, and publication of the BASE data product. The semi-automated pipeline enables us to keep pace with the rapid growth of the network. As of 2022, the AmeriFlux BASE data product contains 3,130 site years of data from 444 sites, with standardized units and variable names of more than 60 common variables, representing the largest long-term data repository for flux-met data in the world. The standardized, quality-ensured data product facilitates multisite comparisons, model evaluations, and data syntheses.

2.
Environ Sci Technol ; 56(8): 4849-4858, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35363471

RESUMEN

California's dairy sector accounts for ∼50% of anthropogenic CH4 emissions in the state's greenhouse gas (GHG) emission inventory. Although California dairy facilities' location and herd size vary over time, atmospheric inverse modeling studies rely on decade-old facility-scale geospatial information. For the first time, we apply artificial intelligence (AI) to aerial imagery to estimate dairy CH4 emissions from California's San Joaquin Valley (SJV), a region with ∼90% of the state's dairy population. Using an AI method, we process 316,882 images to estimate the facility-scale herd size across the SJV. The AI approach predicts herd size that strongly (>95%) correlates with that made by human visual inspection, providing a low-cost alternative to the labor-intensive inventory development process. We estimate SJV's dairy enteric and manure CH4 emissions for 2018 to be 496-763 Gg/yr (mean = 624; 95% confidence) using the predicted herd size. We also apply our AI approach to estimate CH4 emission reduction from anaerobic digester deployment. We identify 162 large (90th percentile) farms and estimate a CH4 reduction potential of 83 Gg CH4/yr for these large facilities from anaerobic digester adoption. The results indicate that our AI approach can be applied to characterize the manure system (e.g., use of an anaerobic lagoon) and estimate GHG emissions for other sectors.


Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , Contaminantes Atmosféricos/análisis , Inteligencia Artificial , Granjas , Humanos , Estiércol , Metano/análisis
3.
Sci Total Environ ; 739: 140077, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32554119

RESUMEN

Johnson grass (Sorghum halepense (L.) Pers.) is rapidly spreading throughout the continental United States (U.S.). Thus, determining magnitudes and seasonal dynamics of carbon dioxide (CO2) and water vapor (H2O) fluxes in Johnson grass is crucial to understand regional changes in hydrology and carbon balance. Using eddy covariance (EC), CO2 and H2O fluxes were measured from June 2017 to October 2019 over a rainfed Johnson grass field in central Oklahoma. Hay was harvested from late May to early July each year, with biomass yield ~7.5 t ha-1. Weekly averaged daily integrated net ecosystem CO2 exchange (NEE), gross primary production (GPP), and evapotranspiration (ET) reached -8.28 ± 0.76 g C m-2, 20.02 ± 1.62 g C m-2, and 5.42 ± 0.26 mm, respectively. Ecosystem water use efficiency (EWUE) and ecosystem light use efficiency (ELUE) ranged from 3.22 to 3.93 g C mm-1 ET and 0.34 to 0.41 g C mol-1 PAR (photosynthetically active radiation), respectively, during peak growths. Based on aggregated fluxes for each month over the three years (2017-2019), cumulative annual NEE was -434 ± 112 g C m-2, indicating a carbon gain by the Johnson grass field. Cumulative annual ET (858 ± 72 mm) was ~86% of the average annual rainfall (996 ± 100 mm). Results showed Johnson grass could be a carbon sink from May to September in the U.S. Southern Great Plains. Both NEE and ET did not decline up to air temperature (Ta) of ~33 °C and vapor pressure deficit (VPD) of ~2 kPa, suggesting optimum Ta of ≥33 °C and VPD of ≥2 kPa for the fluxes. Results indicated that Johnson grass might be well suited for dryland production in the region. Additionally, these findings provide initial baseline information on CO2 fluxes and ET for Johnson grass relative to other forage species in the region.


Asunto(s)
Dióxido de Carbono/análisis , Sorghum , Ecosistema , Oklahoma , Estaciones del Año , Estados Unidos
4.
Sci Adv ; 5(6): eaaw0076, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31183402

RESUMEN

Long-term atmospheric CO2 mole fraction and δ13CO2 observations over North America document persistent responses to the El Niño-Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year-1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.

5.
Environ Sci Technol ; 51(17): 10012-10021, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28727429

RESUMEN

In this study, we explore observational, experimental, methodological, and practical aspects of the flux quantification of greenhouse gases from local point sources by using in situ airborne observations, and suggest a series of conceptual changes to improve flux estimates. We address the major sources of uncertainty reported in previous studies by modifying (1) the shape of the typical flight path, (2) the modeling of covariance and anisotropy, and (3) the type of interpolation tools used. We show that a cylindrical flight profile offers considerable advantages compared to traditional profiles collected as curtains, although this new approach brings with it the need for a more comprehensive subsequent analysis. The proposed flight pattern design does not require prior knowledge of wind direction and allows for the derivation of an ad hoc empirical correction factor to partially alleviate errors resulting from interpolation and measurement inaccuracies. The modified approach is applied to a use-case for quantifying CH4 emission from an oil field south of San Ardo, CA, and compared to a bottom-up CH4 emission estimate.


Asunto(s)
Contaminantes Atmosféricos/análisis , Yacimiento de Petróleo y Gas , Gases , Efecto Invernadero , Metano , Viento
6.
Proc Natl Acad Sci U S A ; 113(11): 2880-5, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929368

RESUMEN

National-scale emissions of carbon tetrachloride (CCl4) are derived based on inverse modeling of atmospheric observations at multiple sites across the United States from the National Oceanic and Atmospheric Administration's flask air sampling network. We estimate an annual average US emission of 4.0 (2.0-6.5) Gg CCl4 y(-1) during 2008-2012, which is almost two orders of magnitude larger than reported to the US Environmental Protection Agency (EPA) Toxics Release Inventory (TRI) (mean of 0.06 Gg y(-1)) but only 8% (3-22%) of global CCl4 emissions during these years. Emissive regions identified by the observations and consistently shown in all inversion results include the Gulf Coast states, the San Francisco Bay Area in California, and the Denver area in Colorado. Both the observation-derived emissions and the US EPA TRI identified Texas and Louisiana as the largest contributors, accounting for one- to two-thirds of the US national total CCl4 emission during 2008-2012. These results are qualitatively consistent with multiple aircraft and ship surveys conducted in earlier years, which suggested significant enhancements in atmospheric mole fractions measured near Houston and surrounding areas. Furthermore, the emission distribution derived for CCl4 throughout the United States is more consistent with the distribution of industrial activities included in the TRI than with the distribution of other potential CCl4 sources such as uncapped landfills or activities related to population density (e.g., use of chlorine-containing bleach).

7.
Ecol Appl ; 25(1): 99-115, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255360

RESUMEN

The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.


Asunto(s)
Bosques , Fotograbar/instrumentación , Fotograbar/métodos , Fotosíntesis/fisiología , Plantas/metabolismo , Estaciones del Año , Pigmentos Biológicos , Plantas/clasificación , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 110(50): 20018-22, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277804

RESUMEN

This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane-propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA's recent decision to downscale its estimate of national natural gas emissions by 25-30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Atmósfera/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Metano/análisis , Agricultura/estadística & datos numéricos , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Industria Procesadora y de Extracción/estadística & datos numéricos , Modelos Químicos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...