Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38978575

RESUMEN

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

2.
Neuroimage ; 295: 120636, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777219

RESUMEN

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Asunto(s)
Encéfalo , Cognición , Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Cognición/fisiología , Persona de Mediana Edad , Encéfalo/fisiología , Anciano , Adulto Joven , Individualidad , Adolescente , Factores de Edad , Envejecimiento/fisiología
3.
Neurobiol Aging ; 136: 78-87, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330642

RESUMEN

Assessments of action semantics consistently reveal markers of Parkinson's disease (PD). However, neurophysiological signatures of the domain remain under-examined in this population, especially under conditions that allow patients to process stimuli without stringent time constraints. Here we assessed event-related potentials and time-frequency modulations in healthy individuals (HPs) and PD patients during a delayed-response semantic judgment task involving related and unrelated action-picture pairs. Both groups had shorter response times for related than for unrelated trials, but they exhibited discrepant electrophysiological patterns. HPs presented significantly greater N400 amplitudes as well as theta enhancement and mu desynchronization for unrelated relative to related trials. Conversely, N400 and theta modulations were abolished in the patients, who further exhibited a contralateralized cluster in the mu range. None of these patterns were associated with the participants' cognitive status. Our results suggest that PD involves multidimensional neurophysiological disruptions during action-concept processing, even under task conditions that elicit canonical behavioral effects. New constraints thus emerge for translational neurocognitive models of the disease.


Asunto(s)
Enfermedad de Parkinson , Semántica , Humanos , Masculino , Femenino , Potenciales Evocados/fisiología , Electroencefalografía , Enfermedad de Parkinson/psicología , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA