Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Scars Burn Heal ; 7: 2059513120988532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796338

RESUMEN

INTRODUCTION: Scar treatments aim to address pathologic collagen deposition; however, they can be expensive or difficult to control. Electrochemical therapy (ECT) offers a simple alternative treatment. The purpose of this study is to examine the acid-base and histological changes in ex vivo human abdominal skin following ECT. METHODS: Forty-two ex vivo human panniculus tissue sections collected from six individuals were tumesced with normal saline. ECT was performed by inserting two platinum needle electrodes connected to a DC power supply into each specimen. Voltage was varied (3-6 V) and applied for 5 minutes. Each specimen was sectioned across both electrode insertion sites and immediately stained with pH sensitive dye. The width of dye color change for each dosimetry pair was calculated. Hematoxylin and eosin staining was used to evaluate samples. RESULTS AND DISCUSSION: ECT caused a spatially localised and dose-dependent increased area of acidic and basic pH around the anode and cathode, respectively. A significantly greater mean width of pH change was generated at the cathode compared to the anode in all treatment groups. Histological evaluation displayed broad condensation and hyalinisation of dermal collagen. CONCLUSION: ECT triggered dermal pH alterations and changed the underlying structural framework of the specimen. This technology may serve as a low-cost, minimally invasive local soft-tissue remodeling technique with potential application in scar management. LEVEL OF EVIDENCE: 5. LAY SUMMARY: Electrochemical therapy is a novel treatment that causes spatially selective dermal injury in areas of interest. This study measures the effects of electrochemical therapy when applied to abdominal skin. Electrochemical therapy appears to have beneficial effects by causing a highly localised reduction in collagen content or local softening of tissue, which is consistent with other studies on scar therapies, including chemexfoliation, radiofrequency technologies, and lasers. However, electrochemical therapy can be performed at a fraction of the costs of these aforementioned modalities.

2.
World J Stem Cells ; 12(7): 659-675, 2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32843920

RESUMEN

BACKGROUND: The impairment of cutaneous wound healing results in chronic, non-healing wounds that are caused by altered wound environment oxygenation, tissue injury, and permissive microbial growth. Current modalities for the treatment of these wounds inadequately address the complex changes involved in chronic wound pathogenesis. Consequently, stem cell therapies have emerged as a potential therapeutic modality to promote cutaneous regeneration through trophic and paracrine activity. AIM: To investigate current literature regarding use of stem cell therapies for the clinical treatment of chronic, non-healing wounds. METHODS: PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus were queried with combinations of the search terms "mesenchymal stem cells," "adult stem cells," "embryonic stem cells," "erythroid precursor cells," "stem cell therapies," and "chronic wounds" in order to find relevant articles published between the years of 2000 and 2019 to review a 20-year experience. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (reviews, case reports/series, retrospective/prospective studies, and clinical trials) were evaluated by the authors for their depiction of clinical stem cell therapy use. Data were extracted from the articles using a standardized collection tool. RESULTS: A total of 43 articles describing the use of stem cell therapies for the treatment of chronic wounds were included in this review. While stem cell therapies have been explored in in vitro and in vivo applications in the past, recent efforts are geared towards assessing their clinical role. A review of the literature revealed that adipose-derived stem cells, bone marrow-derived stem cells, bone marrow-derived mononuclear cells, epidermally-derived mesenchymal stem cells, fibroblast stem cells, keratinocyte stem cells, placental mesenchymal stem cells, and umbilical cord mesenchymal stem cells have all been employed in the treatment of chronic wounds of various etiologies. Most recently, embryonic stem cells have emerged as a novel stem cell therapy with the capacity for multifaceted germ cell layer differentiation. With the capacity for self-renewal and differentiation, stem cells can enrich existing cell populations in chronic wounds in order to overcome barriers impeding the progression of wound healing. Further, stem cell therapies can be utilized to augment cell engraftment, signaling and activity, and resultant patient outcomes. CONCLUSION: Assessing observed clinical outcomes, potential for stem cell use, and relevant therapeutic challenges allows wound care stakeholders to make informed decisions regarding optimal treatment approaches for their patients' chronic wounds.

3.
Facial Plast Surg Aesthet Med ; 22(2): 86-92, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32078388

RESUMEN

Importance: Body fat contouring procedures have increasingly grown in popularity over the years. As such, there is a need for inexpensive, minimally invasive, and simple fat reduction/contouring technique. Objective: To examine the acid-base and histological changes in ex vivo human adipose tissue after electrochemolipolysis (ECL). Design, Setting, and Participants: Panniculus tissue specimens obtained after abdominoplasty procedures were tumesced with normal saline. Two platinum needle electrodes were inserted into each sample and connected to a DC power supply. Voltage (3-6 V) was varied and applied for 5 min. Specimens were sectioned through a sagittal midline across both electrode insertion sites and immediately stained with pH-sensitive dye. A numerical algorithm was used to calculate the area of the dye color change for each dosimetry pair. Samples were also evaluated utilizing light microscopy (hematoxylin and eosin). An ex vivo human adipose tissue model was used for evaluating the effects of ECL. Results: Acidic and basic pH was appreciated surrounding the anode and cathode insertion sites, respectively. The effect was spatially localized and dose dependent. Statistical analysis of these data showed no significant difference between the mean area of the pH disturbance generated at the anode compared with the cathode at 3 V for 5 min (6.04 mm2 vs. 2.95 mm2, p = 0.40, 95% CI -4.8 to 11). A significantly greater area of pH disruption was generated at the cathode versus the anode in groups 4 V for 5 min (14.7 mm2 vs. 5.00 mm2, p = 0.032, 95% CI 0.93-19), 5 V for 5 min (15.5 mm2 vs. 6.72 mm2, p = 0.019, 95% CI 1.6-16), and 6 V for 5 min (22.5 mm2 vs. 10.0 mm2, p = 0.047, 95% CI 0.22-25). Acute structural changes in adipocytes were observed in all specimens. Vascular damage with adjacent adipocyte necrosis was prominent at the cathode site in group 6 V for 5 min. Conclusions and Relevance: ECL at the studied dosimetry parameters induced acid and base changes in human adipose tissue, suggesting its potential use in nonsurgical fat reduction as an ultralow cost alternative to current lipolytic devices and pharmaceuticals. Level of Evidence: NA.


Asunto(s)
Abdominoplastia/métodos , Contorneado Corporal/métodos , Técnicas Electroquímicas/métodos , Lipectomía/métodos , Grasa Subcutánea Abdominal/cirugía , Biomarcadores/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Oxidación-Reducción , Grasa Subcutánea Abdominal/metabolismo , Grasa Subcutánea Abdominal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...