Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Org Chem ; 86(3): 2998-3007, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33502190

RESUMEN

Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO-), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO- through lowering the activation energy of this process. This investigation also demonstrates why BrO- is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromide-our calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO-. Overall, this work demonstrates that the hypervalent iodine(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.


Asunto(s)
Bromuros , Agua , Alcoholes , Catálisis , Oxidación-Reducción
2.
Chem Rev ; 121(14): 8685-8755, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33180474

RESUMEN

The past decade has witnessed the golden age of homogeneous gold-catalyzed reactions, especially those that involve the transformation of highly strained molecules into complex molecular architectures. Gold catalysts, with unique electronic properties and catalytic abilities, have elevated versatile reaction modes through π-interaction induced activation. On the basis of increasing research interest in this topic, together with the significant development of various ligands, including phosphine ligands and azacyclic or noncyclic carbene ligands, the understanding of the catalytic function of gold catalysts has become much deeper and more comprehensive. Different reaction needs thus could be adapted by a novel gold catalyst with a diversified ligand selection. Furthermore, the whole evolution of the gold catalysis on synthetic methodologies has realized and expanded its application into natural product synthesis as well as the potentiality of drug discovery, which endows this ancient metal with a magnificent renaissance. The reactivity of strained small ring molecules with high tension has always been an important research topic in organic chemistry. When the highly strained small ring is linked with a π-electron rich moiety or contains a heteroatom, the gold activation of the π-system or coordination with the heteroatom can initiate a cascade reaction, usually followed by ring opening or expansion. These processes can result in the rapid construction of complex and distinct molecular structures, many of which feature in biologically important molecules. In this review, we will mainly summarize the advances on diverse reaction types and molecular constructions accomplished by homogeneous gold catalysis using highly strained substrates, including methylenecyclopropanes (MCPs), vinylidenecyclopropanes (VDCPs), cyclopropenes as well as aziridine- and epoxide-containing molecules, focusing on the last 10 years. For functionalized alkynyl cyclopropanes, several early inspiring and elegant examples will be described in this review for systematically understanding these transformations.

3.
Org Lett ; 21(12): 4703-4708, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31188010

RESUMEN

Aminobenzaldehydes bearing a pendant 3,5-dinitrophenyl group react thermally with N-substituted α-amino acids to form unprecedented benzoazepine-fused isoindolines. The reaction proceeds via a dearomatization/rearomatization sequence involving an intramolecular (3 + 2)-cycloaddition between the in situ formed azomethine ylide and the dinitroarene. Various glycine derivatives are tolerated as well as branched substrates based on cyclic, α-mono-, and α,α-disubstituted amino acids, giving single diastereomers in many cases. The method is scalable and gives products with a nitro group ready for further manipulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA