RESUMEN
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Asunto(s)
Sistema Cardiovascular , Guanina , Ratas , Ratones , Animales , Ratas Endogámicas Dahl , Guanina/metabolismo , Guanina/farmacología , Natriuresis , Sistema Cardiovascular/metabolismo , Potasio , Inosina/farmacologíaRESUMEN
Alterations to arginine vasopressin (AVP) secretion, the urinary bladder urothelium (UT) and other components of the bladder, and the water homeostasis biosystem may be relevant to the pathophysiology of nocturia and nocturnal polyuria (NP). AVP is the primary hormone involved in water homeostasis. Disruption to the physiological release of AVP or its target effects may relate to several urinary disturbances. Circadian dysregulation and the effects of aging, for example, the development of oxidative stress and mitochondrial dysfunction, may play a role in nocturia voiding symptoms. The urinary bladder UT not only acts as a highly efficient barrier that is maintained during the filling and voiding of the urinary bladder, but is also capable of sensory and transducer function through a network of functional receptors and ion channels that enable reciprocal communication between UT cells and neighboring elements of the bladder mucosa and wall. Functional components of the UT (eg, claudins and receptors or ion channels) play important roles in AVP-mediated water homeostasis. These components and functions involved in water homeostasis, as well as kidney function, may be affected by the aging process, including age-related mitochondrial dysfunction. The characteristics of NP are discussed and the association between NP and circadian rhythm is examined in light of reports that suggest that nocturia should be considered as a type of circadian dysfunction. Many possible pathologic mechanisms that underlie nocturia and NP have been identified. Future studies may provide further insight into pathophysiology with the hope of identifying new treatment modalities.