Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 31(11): 3176-3192, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37766429

RESUMEN

The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.


Asunto(s)
Inhibidores Enzimáticos , Proteína NEDD8 , Neoplasias , Viroterapia Oncolítica , Animales , Humanos , Ratones , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Interferones , Proteína NEDD8/antagonistas & inhibidores , Proteína NEDD8/genética , Neoplasias/tratamiento farmacológico
2.
Front Immunol ; 14: 1099459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969187

RESUMEN

Introduction: Adipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook. Methods: We investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms. Results: We show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance. Discussion: Our findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Ováricas , Humanos , Femenino , Microambiente Tumoral , Medios de Cultivo Condicionados , Virus Oncolíticos/fisiología , Neoplasias Ováricas/terapia , Lípidos
3.
J Immunother Cancer ; 9(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526607

RESUMEN

Sarcomas are a rare malignancy of mesenchymal tissues, comprizing a plethora of unique subtypes, with more than 60 types. The sheer heterogeneity of disease phenotype makes this a particularly difficult cancer to treat. Radiotherapy, chemotherapy and surgery have been employed for over three decades and, although effective in early disease (stages I-II), in later stages, where metastatic tumors are present, these treatments are less effective. Given the spectacular results obtained by cancer immunotherapy in a variety of solid cancers and leukemias, there is now a great interest in appliying this new realm of therapy for sarcomas. The widespread use of immunotherapy for sarcoma relies on immuno-profiling of subtypes, immunomonitoring for prognosis, preclinical studies and insight into the safety profile of these novel therapies. Herein, we discuss preclinical and clinical data highlighting how immunotherapy is being used in soft tissue sarcoma and bone sarcomas.


Asunto(s)
Inmunoterapia/métodos , Osteosarcoma/tratamiento farmacológico , Sarcoma/tratamiento farmacológico , Ensayos Clínicos como Asunto , Humanos , Estadificación de Neoplasias , Osteosarcoma/inmunología , Pronóstico , Sarcoma/inmunología , Sarcoma/patología , Resultado del Tratamiento
4.
Mol Ther Oncolytics ; 19: 240-252, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33209979

RESUMEN

Prime-boost vaccination employing heterologous viral vectors encoding an antigen is an effective strategy to maximize the antigen-specific immune response. Replication-deficient adenovirus serotype 5 (Ad5) is currently being evaluated clinically in North America as a prime in conjunction with oncolytic rhabdovirus Maraba virus (MG1) as a boost. The use of an oncolytic rhabdovirus encoding a tumor antigen elicits a robust anti-cancer immune response and extends survival in murine models of cancer. Given the prevalence of pre-existing immunity to Ad5 globally, we explored the potential use of DEC205-targeted antibodies as an alternative agent to prime antigen-specific responses ahead of boosting with an oncolytic rhabdovirus expressing the same antigen. We found that a prime-boost vaccination strategy, consisting of an anti-DEC205 antibody fused to the model antigen ovalbumin (OVA) as a prime and oncolytic rhabdovirus-OVA as a boost, led to the formation of a robust antigen-specific immune response and improved survival in a B16-OVA tumor model. Overall, our study shows that anti-DEC205 antibodies fused to cancer antigens are effective to prime oncolytic rhabdovirus-boosted cancer antigen responses and may provide an alternative for patients with pre-existing immunity to Ad5 in humans.

5.
Commun Biol ; 3(1): 254, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444806

RESUMEN

We have demonstrated that microtubule destabilizing agents (MDAs) can sensitize tumors to oncolytic vesicular stomatitis virus (VSVΔ51) in various preclinical models of cancer. The clinically approved T-DM1 (Kadcyla®) is an antibody-drug conjugate consisting of HER2-targeting trastuzumab linked to the potent MDA and maytansine derivative DM1. We reveal that combining T-DM1 with VSVΔ51 leads to increased viral spread and tumor killing in trastuzumab-binding, VSVΔ51-resistant cancer cells. In vivo, co-treatment of VSVΔ51 and T-DM1 increased overall survival in HER2-overexpressing, but trastuzumab-refractory, JIMT1 human breast cancer xenografts compared to monotherapies. Furthermore, viral spread in cultured HER2+ human ovarian cancer patient-derived ascites samples was enhanced by the combination of VSVΔ51 and T-DM1. Our data using the clinically approved Kadcyla® in combination with VSVΔ51 demonstrates proof of concept that targeted delivery of a viral-sensitizing molecule using an antibody-drug conjugate can enhance oncolytic virus activity and provides rationale for translation of this approach.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/terapia , Sinergismo Farmacológico , Viroterapia Oncolítica/métodos , Rhabdoviridae/genética , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Terapia Combinada , Femenino , Humanos , Maitansina/administración & dosificación , Ratones , Ratones Desnudos , Trastuzumab/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...