Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-512054

RESUMEN

Remdesivir was the first drug to be approved for the treatment of severe COVID-19; followed by molnupiravir (another prodrug of a nucleoside analogue) and the protease inhibitor nirmatrelvir. Combination of antiviral drugs may result in improved potency and help to avoid or delay the development of resistant variants. We set out to explore the combined antiviral potency of GS-441524 (the parent nucleoside of remdesivir) and molnupiravir against SARS-CoV-2. In SARS-CoV-2 (BA.5) infected A549-Dual hACE2-TMPRSS2 cells, the combination resulted in an overall additive antiviral effect with a synergism at certain concentrations. Next, the combined effect was explored in Syrian hamsters infected with SARS-CoV-2 (Beta, B.1.351); treatment was started at the time of infection and continued twice daily for four consecutive days. At 4 day 4 post-infection, GS-441524 (50 mg/kg, oral BID) and molnupiravir (150 mg/kg, oral BID) as monotherapy reduced infectious viral loads by 0.5 and 1.6 log10, respectively, compared to the vehicle control. When GS-441524 (50 mg/kg, BID) and molnupiravir (150 mg/kg, BID) were combined, infectious virus was no longer detectable in the lungs of 7 out of 10 of the treated hamsters (4.0 log10 reduction) and titers in the other animals were reduced by ~2 log10. The combined antiviral activity of molnupiravir which acts by inducing lethal mutagenesis and GS-441524, which acts as a chain termination appears to be highly effective in reducing SARS-CoV-2 replication/infectivity. The unexpected potent antiviral effect of the combination warrants further exploration as a potential treatment for COVID-19.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-509903

RESUMEN

The SARS-CoV-2 main protease (3CLpro) is one of the promising therapeutic target for the treatment of COVID-19. Nirmatrelvir is the only the 3CLpro inhibitor authorized for treatment of COVID-19 patients at high risk of hospitalization; other 3Lpro inhibitors are in development. We recently repored on the in vitro selection of a SARS-CoV2 3CLpro (L50F-E166A-L167F; short 3CLprores) virus that is cross-resistant with nirmatrelvir and yet other 3CLpro inhibitors. Here, we demonstrate that the resistant virus replicates efficiently in the lungs of intranassaly infected hamsters and that it causes a lung pathology that is comparable to that caused by the WT virus. Moreover, 3CLprores infected hamsters transmit the virus efficiently to co-housed non-infected contact hamsters. Fortunately, resistance to Nirmatrelvir does not readily develop (in the clinical setting) since the drug has a relatively high barrier to resistance. Yet, as we demonstrate, in case resistant viruses emerge, they may easily spread and impact therapeutic options for others. Therefore, the use of SARS-CoV-2 3CLpro protease inhibitors in combinations with drugs that have a different mechanism of action, may be considered to avoid the development of drug-resistant viruses in the future.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-491916

RESUMEN

Ancestral SARS-CoV-2 lacks the intrinsic ability to bind to the mouse ACE2 receptor and therefore establishment of SARS-CoV-2 mouse models has been limited to the use of mouse-adapted viruses or genetically modified mice. Interestingly, some of the variants of concern, such as the beta B.1.351 variant, show an improved binding to the mouse receptor and hence better replication in different Wild type (WT) mice species. Here, we desribe the establishment of SARS-CoV-2 beta B.1.351 variant infection model in male SCID mice as a tool to assess the antiviral efficacy of potential SARS-CoV-2 small molecule inhibitors. Intranasal infection of male SCID mice with 105 TCID50 of the beta B.1.351 variant resulted in high viral loads in the lungs and moderate signs of lung pathology on day 3 post-infection (pi). Treatment of infected mice with the antiviral drugs Molnupiravir (200 mg/kg, BID) or Nirmatrelvir (300 mg/kg, BID) for 3 consecutive days significantly reduced the infectious virus titers in the lungs by 1.9 and 3.8 log10 TCID50/mg tissue, respectively and significantly improved lung pathology. Together, these data demonstrate the validity of this SCID mice/beta B.1.351 variant infection model as a convenient preclinical model for assessment of potential activity of antivirals against SARS-CoV-2. ImportanceUnlike the ancestral SARS-CoV-2 strain, the beta (B.1.351) VoC has been reported to replicate to some extent in WT mice (species C57BL/6 and BALB/c). We here demonstrate that infection of SCID mice with SARS-CoV-2 beta variant results in high viral loads in the lungs on day 3 post-infection (pi). Treatment of infected mice with the antiviral drugs Molnupiravir or Nirmatrelvir for 3 consecutive days markedly reduced the infectious virus titers in the lungs and improved lung pathology. The advantages of using this mouse model over the standard hamster infection models to assess the in vivo efficacy of small molecule antiviral drugs are (i) the use of a clinical isolate without the need to use mouse-adapted strains or genetically modified animals (ii) lower amount of the test drug is needed and (ii) more convenient housing conditions compared to bigger rodents such as hamsters.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-486377

RESUMEN

Coronaviruses use diverse Spike (S) glycoproteins to attach to host receptors and fuse with target cells. Using a broad screening approach, we isolated from SARS-CoV-2 immune donors seven monoclonal antibodies (mAbs) that bind to all human alpha and beta coronavirus S proteins. These mAbs recognize the fusion peptide and acquire high affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha and beta coronaviruses, including Omicron BA.1 variant and bat WIV-1, and reduce viral titers and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope which is concealed by prefusion-stabilizing 2P mutations and becomes exposed upon binding of ACE2 or ACE2-mimicking mAbs. This study identifies a new class of pan-coronavirus neutralizing mAbs and reveals a receptor-induced conformational change in the S protein that exposes the fusion peptide region.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-481472

RESUMEN

Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. An increasing off-label use of Ivermectin for COVID-19 has been reported. We here assessed the effect of Ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of Ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened the SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of Molnupiravir (Lagevrio) when combined with this drug. This study contributes to the growing body of evidence that Ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of Ivermectin for the treatment of COVID-19.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474086

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the other SARS-CoV-2 VoCs replicate efficiently in Syrian hamsters, alike also the ancestral strains. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infecetd hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia. Further experiments are needed to determine whether the omicron VoC replicates possibly more efficiently in the upper respiratory tract of hamsters than in their lungs.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-468374

RESUMEN

Current first-generation COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) that threaten to escape vaccine-mediated protection. Here we show in a stringent hamster model that immunization using prototypic spike expressed from a potent YF17D viral vector (1) provides vigorous protection against infection with ancestral virus (B lineage) and VOC Alpha (B.1.1.7), however, is insufficient to provide maximum protection against the Beta (B.1.351) variant. To improve vaccine efficacy, we created a revised vaccine candidate that carries an evolved spike antigen. Vaccination of hamsters with this updated vaccine candidate provides full protection against intranasal challenge with all four VOCs Alpha, Beta, Gamma (P.1) and Delta (B.1.617.2) resulting in complete elimination of infectious virus from the lungs and a marked improvement in lung pathology. Vaccinated hamsters did also no longer transmit the Delta variant to non-vaccinated sentinels. Hamsters immunized with our modified vaccine candidate also mounted marked neutralizing antibody responses against the recently emerged Omicron (B.1.1.529) variant, whereas the old vaccine employing prototypic spike failed to induce immunity to this antigenically distant virus. Overall, our data indicate that current first-generation COVID-19 vaccines need to be urgently updated to cover newly emerging VOCs to maintain vaccine efficacy and to impede virus spread at the community level. Significance StatementSARS-CoV-2 keeps mutating rapidly, and the ongoing COVID-19 pandemic is fueled by new variants escaping immunity induced by current first-generation vaccines. There is hence an urgent need for universal vaccines that cover variants of concern (VOC). In this paper we show that an adapted version of our vaccine candidate YF-S0* provides full protection from infection, virus transmission and disease by VOCs Alpha, Beta, Gamma and Delta, and also results in markedly increased levels of neutralizing antibodies against recently emerged Omicron VOC in a stringent hamster model. Our findings underline the necessity to update COVID-19 vaccines to curb the pandemic, providing experimental proof on how to maintain vaccine efficacy in view of an evolving SARS-CoV-2 diversity.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-467077

RESUMEN

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433449

RESUMEN

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433062

RESUMEN

Within one year after its emergence, more than 108 million people contracted SARS-CoV-2 and almost 2.4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1), variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics and new spikes in excess mortality. We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 lineages in Syrian golden hamsters to assess their relative infectivity and pathogenicity in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. Overall, we established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-429108

RESUMEN

In response to the ongoing COVID-19 pandemic, repurposing of drugs for the treatment of SARS-CoV-2 infections is being explored. The HIV protease inhibitor Nelfinavir, widely prescribed in combination with other HIV inhibitors, has been shown to inhibit in vitro SARS-CoV-2 replication. We here report on the effect of Nelfinavir in the Syrian hamster SARS-CoV-2 infection model. Although treatment of infected hamsters with either 15 or 50 mg/kg BID Nelfinavir [for four consecutive days, initiated on the day of infection] does not reduce viral RNA loads nor infectious virus titres in the lungs compared to the vehicle control, the drug reduced virus-induced lung pathology to nearly the baseline scores of healthy animals. A substantial interstitial infiltration of neutrophils is observed in the lungs of treated (both infected and uninfected) animals. The protective effect of Nelfinavir on SARS-CoV-2-induced lung pathology (at doses that are well tolerated and that result in exposures nearing those observed in HIV-infected patients) may lay the foundation for clinical studies with this widely used drug.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-419242

RESUMEN

Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV2. In recent days preliminary efficacy data have been reported in COVID-19 patients. We here studied the combined antiviral effect of the drugs in the SARS-CoV2 hamster infection model. We first demonstrate that Molnupiravir can reduce infectious virus titers in lungs of infected animals in a dose-dependent manner by up to 3.5 log10 which is associated with a marked improvement of virus-induced lung pathology. When animals are treated with a combination of suboptimal doses of Molnupiravir and Favipiravir (that each alone result in respectively a 1.3 log10 and 1.1 log10 reduction of infectious virus titers in the lungs), a marked combined potency is observed. Infectious virus titers in the lungs of animals treated with the combo are on average reduced by 4.5 log10 and infectious virus are no longer detected in the lungs of 60% of treated infected animals. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs. In the combo-treated hamsters an increased frequency of C-to-T and G-to-A mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir and Favipiravir in the treatment of COVID-19.

13.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-193045

RESUMEN

The explosively expanding COVID-19 pandemic urges the development of safe, efficacious and fast-acting vaccines to quench the unrestrained spread of SARS-CoV-2. Several promising vaccine platforms, developed in recent years, are leveraged for a rapid emergency response to COVID-191. We employed the live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express the prefusion form of the SARS-CoV-2 Spike antigen. In mice, the vaccine candidate, tentatively named YF-S0, induces high levels of SARS-CoV-2 neutralizing antibodies and a favorable Th1 cell-mediated immune response. In a stringent hamster SARS-CoV-2 challenge model2, vaccine candidate YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose confers protection from lung disease in most vaccinated animals even within 10 days. These results warrant further development of YF-S0 as a potent SARS-CoV-2 vaccine candidate.

14.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-159053

RESUMEN

SARS-CoV-2 rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus was able to infect millions of people. To date, close to half a million patients succumbed to the viral disease, COVID-19. The high need for treatment options, together with the lack of small animal models of infection has led to clinical trials with repurposed drugs before any preclinical in vivo evidence attesting their efficacy was available. We used Syrian hamsters to establish a model to evaluate antiviral activity of small molecules in both an infection and a transmission setting. Upon intranasal infection, the animals developed high titers of SARS-CoV-2 in the lungs and pathology similar to that observed in mild COVID-19 patients. Treatment of SARS-CoV-2-infected hamsters with favipiravir or hydroxychloroquine (with and without azithromycin) resulted in respectively a mild or no reduction in viral RNA and infectious virus. Micro-CT scan analysis of the lungs showed no improvement compared to non-treated animals, which was confirmed by histopathology. In addition, both compounds did not prevent virus transmission through direct contact and thus failed as prophylactic treatments. By modelling the PK profile of hydroxychloroquine based on the trough plasma concentrations, we show that the total lung exposure to the drug was not the limiting factor. In conclusion, we here characterized a hamster infection and transmission model to be a robust model for studying in vivo efficacy of antiviral compounds. The information acquired using hydroxychloroquine and favipiravir in this model is of critical value to those designing (current and) future clinical trials. At this point, the data here presented on hydroxychloroquine either alone or combined with azithromycin (together with previously reported in vivo data in macaques and ferrets) provide no scientific basis for further use of the drug in humans.

15.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-056838

RESUMEN

Introductory paragraphSince the emergence of SARS-CoV-2 causing COVID-19, the world is being shaken to its core with numerous hospitalizations and hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that productive SARS-CoV-2 infection in the lungs of mice is limited and restricted by early type I interferon responses. In contrast, we show that Syrian hamsters are highly permissive to SARS- CoV-2 and develop bronchopneumonia and a strong inflammatory response in the lungs with neutrophil infiltration and edema. Moreover, we identify an exuberant innate immune response as a key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Finally, we assess SARS-CoV- 2-induced lung pathology in hamsters by micro-CT alike used in clinical practice. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.

16.
Am J Surg Pathol ; 30(10): 1243-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17001154

RESUMEN

Solid pseudopapillary tumors (SPT) of the pancreas are rare neoplasms that occur mostly in young women. Despite of a low malignant potential, 10% to 15% of the cases have aggressive behavior with metastatic dissemination possibly leading to death. To date, no pathological factor can reliably predict the outcome of these tumours. Galectin-3, a major actor in the carcinogenesis of pancreatic ductal adenocarcinoma, has not been investigated in SPT. The presence of progesterone receptors is frequently reported in SPT, whereas that of estrogen receptor (ER) is unclear. We studied 5 cases of SPT consisting of 4 pancreatic tumors and 1 metastatic case. The morphological distinctive feature of metastatic nodules was the presence of polygonal or spindle cells with pleiomorphic nuclei and high mitotic count exhibiting a diffuse, infiltrative growth pattern. We found a strong expression of galectin-3 in all SPTs, whereas, interestingly, it was lower in metastatic nodules. Conversely, no galectin-3 expression was found in normal pancreatic endocrine cells or in neuroendocrine tumors. We suggest therefore that galectin-3 is a useful marker to distinguish SPT from neuroendocrine tumor, and also indicator of behavior because its low expression is associated with metastatic spreading. Moreover, the presence of galectin-3 in both SPT and pancreatic ducts rises the hypothesis of a posible ductal origin of these tumors. Specific antibodies for anti-ERalpha and anti-ERbeta demonstrated a strong expression of ERbeta whereas ERalpha was not detected. In conclusion, the present study brings the first evidence of the involvement of galectin-3 in SPT but also brought up clues which allowed to reconcile previously conflicting results on the presence of ER.


Asunto(s)
Adenocarcinoma Papilar/etiología , Neoplasias Pancreáticas/etiología , Adenocarcinoma Papilar/química , Adenocarcinoma Papilar/secundario , Biomarcadores de Tumor/análisis , Núcleo Celular/patología , Receptor beta de Estrógeno/análisis , Galectina 3/análisis , Humanos , Metástasis de la Neoplasia/patología , Páncreas/anatomía & histología , Páncreas/química , Conductos Pancreáticos/química , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...