Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
JAMA Ophthalmol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753338

RESUMEN

Importance: Data regarding the prevalence of various inherited retinal diseases (IRDs) are limited and vary across populations; moreover, nationwide prevalence studies may be limited to a specific IRD phenotype, potentially leading to inaccurate prevalence estimations. Therefore, nationwide prevalence data are needed. Objective: To determine the prevalence of 67 IRD phenotypes in the Israeli population. Design, Setting, and Participants: This cohort study collected nationwide data regarding the number of individuals affected with IRD phenotypes assessed in 10 clinical and academic centers in Israel as part of the research activity of the Israeli inherited retinal disease consortium. Data were collected in May 2023 on 9396 individuals residing in Israel who were diagnosed by an ophthalmologist with an IRD using either electroretinography or retinal imaging where included. Individuals with retinal diseases known to have a nonmendelian basis or without a clear genetic basis and those who were reported as deceased at the time of data collection were excluded from this study. Main Outcomes and Measures: Prevalence of 67 IRD phenotypes. Results: Among the 9396 participants in our cohort, the most common IRD in Israel was retinitis pigmentosa with a disease prevalence of approximately 1:2400 individuals, followed by cone-rod dystrophy (approximately 1:14 000), Stargardt disease (approximately 1:16 000), Usher syndrome (approximately 1:16,000), and congenital stationary night blindness (approximately 1:18 000). The prevalence of all IRDs combined was 1:1043 individuals. Conclusions and Relevance: The current study provides large prevalence dataset of 67 IRD phenotypes, some of which are extremely rare, with only a single identified case. This analysis highlights the potential importance of performing additional nationwide prevalence studies to potentially assist with determining the prevalence of IRDs worldwide.

2.
Hum Genet ; 143(5): 695-701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607411

RESUMEN

With the increasing importance of genomic data in understanding genetic diseases, there is an essential need for efficient and user-friendly tools that simplify variant analysis. Although multiple tools exist, many present barriers such as steep learning curves, limited reference genome compatibility, or costs. We developed VARista, a free web-based tool, to address these challenges and provide a streamlined solution for researchers, particularly those focusing on rare monogenic diseases. VARista offers a user-centric interface that eliminates much of the technical complexity typically associated with variant analysis. The tool directly supports VCF files generated using reference genomes hg19, hg38, and the emerging T2T, with seamless remapping capabilities between them. Features such as gene summaries and links, tissue and cell-specific gene expression data for both adults and fetuses, as well as automated PCR design and integration with tools such as SpliceAI and AlphaMissense, enable users to focus on the biology and the case itself. As we demonstrate, VARista proved effective in narrowing down potential disease-causing variants, prioritizing them effectively, and providing meaningful biological context, facilitating rapid decision-making. VARista stands out as a freely available and comprehensive tool that consolidates various aspects of variant analysis into a single platform that embraces the forefront of genomic advancements. Its design inherently supports a shift in focus from technicalities to critical thinking, thereby promoting better-informed decisions in genetic disease research. Given its unique capabilities and user-centric design, VARista has the potential to become an essential asset for the genomic research community. https://VARista.link.


Asunto(s)
Genoma Humano , Internet , Programas Informáticos , Humanos , Genómica/métodos , Variación Genética , Secuenciación Completa del Genoma/métodos
3.
Genes (Basel) ; 15(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540414

RESUMEN

POT1 (Protection of Telomeres 1) is a key component of the six-membered shelterin complex that plays a critical role in telomere protection and length regulation. Germline variants in the POT1 gene have been implicated in predisposition to cancer, primarily to melanoma and chronic lymphocytic leukemia (CLL). We report the identification of POT1 p.(I78T), previously ranked with conflicting interpretations of pathogenicity, as a founder pathogenic variant among Ashkenazi Jews (AJs) and describe its unique clinical landscape. A directed database search was conducted for individuals referred for genetic counselling from 2018 to 2023. Demographic, clinical, genetic, and pathological data were collected and analyzed. Eleven carriers, 25 to 67 years old, from ten apparently unrelated families were identified. Carriers had a total of 30 primary malignancies (range 1-6); nine carriers (82%) had recurrent melanoma between the ages of 25 and 63 years, three carriers (27%) had desmoid tumors, three (27%) had papillary thyroid cancer (PTC), and five women (63% of female carriers) had breast cancer between the ages of 44 and 67 years. Additional tumors included CLL; sarcomas; endocrine tumors; prostate, urinary, and colorectal cancers; and colonic polyps. A review of a local exome database yielded an allelic frequency of the variant of 0.06% among all ethnicities and of 0.25% in AJs. A shared haplotype was found in all carriers tested. POT1 p.(I78T) is a founder disease-causing variant associated with early-onset melanoma and additional various solid malignancies with a high tumor burden. We advocate testing for this variant in high-risk patients of AJ descent. The inclusion of POT1 in germline panels for various types of cancer is warranted.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Melanoma , Neoplasias Cutáneas , Neoplasias de la Tiroides , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Melanoma/genética , Leucemia Linfocítica Crónica de Células B/genética , Proteínas de Unión a Telómeros/genética , Neoplasias Cutáneas/genética , Complejo Shelterina
4.
Eur J Hum Genet ; 32(5): 550-557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433265

RESUMEN

Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders caused by mutations in collagen and collagen-interacting genes. We delineate a novel form of EDS with vascular features through clinical and histopathological phenotyping and genetic studies of a three-generation pedigree, displaying an apparently autosomal dominant phenotype of joint hypermobility and frequent joint dislocations, atrophic scarring, prolonged bleeding time and age-related aortic dilatation and rupture. Coagulation tests as well as platelet counts and function were normal. Reticular dermis displayed highly disorganized collagen fibers and transmission electron microscopy (TEM) revealed abnormally shaped fibroblasts and endothelial cells, with high amount and irregular shape of extracellular matrix (ECM) substance, especially near blood vessels. Genetic analysis unraveled a heterozygous mutation in THBS2 (NM_003247.5:c.2686T>C, p.Cys896Arg). We generated CRISPR/Cas9 knock-in (KI) mice, bearing the heterozygous human mutation in the mouse ortholog. The KI mice demonstrated phenotypic traits correlating with those observed in the human subjects, as evidenced by morphologic, histologic, and TEM analyses, in conjunction with bleeding time assays. Our findings delineate a novel form of human EDS with classical-like elements combined with vascular features, caused by a heterozygous THBS2 missense mutation. We further demonstrate a similar phenotype in heterozygous THBS2Cys896Arg KI mice, in line with previous studies in Thbs2 homozygous null-mutant mice. Notably, THBS2 encodes Thrombospondin-2, a secreted homotrimeric matricellular protein that directly binds the ECM-shaping Matrix Metalloproteinase 2 (MMP2), mediating its clearance. THBS2 loss-of-function attenuates MMP2 clearance, enhancing MMP2-mediated proteoglycan cleavage, causing ECM abnormalities similar to those seen in the human and mouse disease we describe.


Asunto(s)
Síndrome de Ehlers-Danlos , Heterocigoto , Trombospondinas , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Síndrome de Ehlers-Danlos/metabolismo , Animales , Trombospondinas/genética , Trombospondinas/metabolismo , Humanos , Ratones , Masculino , Femenino , Adulto , Fenotipo , Linaje , Persona de Mediana Edad , Mutación Missense
5.
J Med Virol ; 96(2): e29436, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38380509

RESUMEN

Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Carcinogénesis , Herpesvirus Humano 8/fisiología , FN-kappa B/metabolismo , Sarcoma de Kaposi/genética , Latencia del Virus/genética , Replicación Viral
6.
Clin Genet ; 105(6): 671-675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351533

RESUMEN

The biallelic variants of the POP1 gene are associated with the anauxetic dysplasia (AAD OMIM 607095), a rare skeletal dysplasia, characterized by prenatal rhizomelic shortening of limbs and generalized joint hypermobility. Affected individuals usually have normal neurodevelopmental milestones. Here we present three cases from the same family with likely pathogenic homozygous POP1 variant and a completely novel phenotype: a girl with global developmental delay and autism, microcephaly, peculiar dysmorphic features and multiple congenital anomalies. Two subsequent pregnancies were terminated due to multiple congenital malformations. Fetal DNA samples revealed the same homozygous variant in the POP1 gene. Expression of the RMRP was reduced in the proband compared with control and slightly reduced in both heterozygous parents, carriers for this variant. To our knowledge, this is the first report of this new phenotype, associated with a novel likely pathogenic variant in POP1. Our findings expand the phenotypic spectrum of POP1-related disorders.


Asunto(s)
Homocigoto , Fenotipo , Humanos , Femenino , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Mutación , Linaje , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Preescolar , Niño , Predisposición Genética a la Enfermedad
7.
J Med Genet ; 61(6): 566-577, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38296634

RESUMEN

BACKGROUND: Sex-specific predilection in neurological diseases caused by mutations in autosomal genes is a phenomenon whose molecular basis is poorly understood. We studied females of consanguineous Bedouin kindred presenting with severe global developmental delay and epilepsy. METHODS: Linkage analysis, whole exome sequencing, generation of CRISPR/cas9 knock-in mice, mouse behaviour and molecular studies RESULTS: Linkage analysis and whole exome sequencing studies of the affected kindred delineated a ~5 Mbp disease-associated chromosome 2q35 locus, containing a novel homozygous frameshift truncating mutation in ZNF142, in line with recent studies depicting similar ZNF142 putative loss-of-function human phenotypes with female preponderance. We generated knock-in mice with a truncating mutation adjacent to the human mutation in the mouse ortholog. Behaviour studies of homozygous Zfp142R1508* mice showed significant phenotype only in mutant females, with learning and memory deficits, hyperactivity and aberrant loss of fear of open spaces. Bone marrow and spleen of homozygous Zfp142R1508* mice showed depletion of lymphoid and haematopoietic cells, mostly in females. RT-PCR showed lower expression of Zpf142 in brain compartments of female versus male wild-type mice. RNA-seq studies of hippocampus, hypothalamus, cortex and cerebellum of female wild-type versus homozygous Zfp142R1508* mice demonstrated differentially expressed genes. Notably, expression of Taok1 in the cortex and of Mllt6 in the hippocampus was downregulated in homozygous Zfp142R1508* mice. Taok1 mutations have been associated with aberrant neurodevelopment and behaviour. Mllt6 expression is regulated by sex hormones and Mllt6 null-mutant mice present with haematopoietic, immune system and female-specific behaviour phenotypes. CONCLUSION: ZNF142 mutation downregulates Mllt6 and Taok1, causing a neurodevelopmental phenotype in humans and mice with female preponderance.


Asunto(s)
Mutación , Animales , Femenino , Ratones , Masculino , Humanos , Linaje , Proteínas de Unión al ADN/genética , Fenotipo , Factores de Transcripción/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Secuenciación del Exoma , Ligamiento Genético , Epilepsia/genética , Epilepsia/patología
8.
Rambam Maimonides Med J ; 15(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38261349

RESUMEN

Late-onset nasolacrimal duct obstruction (NLDO) as a result of inflammatory processes causing dacryo-stenosis is a common entity affecting mostly women. While a few mechanisms have been suggested as contributors to the expression of NLDO, the trigger for the inflammation remains mostly unknown. Familial predilection for this condition has not been previously reported. We present two families with multiple individuals affected with congenital or late-onset NLDO, describe the signs and symptoms of the affected individuals, and explore their medical history for any contributing factors. Family A, spanning four generations, included 7 female patients affected by late-onset NLDO. Family B, spanning two generations, included 8 individuals affected by either congenital or late-onset NLDO. This case series suggests a familial predisposition to NLDO, apparently with an autosomal dominant inheritance pattern. Further studies are needed to elucidate the molecular basis of this genetic predisposition.

9.
Genet Med ; 26(4): 101068, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193396

RESUMEN

PURPOSE: Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS: Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS: 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION: Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.


Asunto(s)
Genotipo , Humanos , Fenotipo , Mutación , Homocigoto , Estudios de Asociación Genética
10.
J Med Genet ; 61(2): 117-124, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37399313

RESUMEN

BACKGROUND: Otosclerosis is a common cause of adult-onset progressive hearing loss, affecting 0.3%-0.4% of the population. It results from dysregulation of bone homeostasis in the otic capsule, most commonly leading to fixation of the stapes bone, impairing sound conduction through the middle ear. Otosclerosis has a well-known genetic predisposition including familial cases with apparent autosomal dominant mode of inheritance. While linkage analysis and genome-wide association studies suggested an association with several genomic loci and with genes encoding structural proteins involved in bone formation or metabolism, the molecular genetic pathophysiology of human otosclerosis is yet mostly unknown. METHODS: Whole-exome sequencing, linkage analysis, generation of CRISPR mutant mice, hearing tests and micro-CT. RESULTS: Through genetic studies of kindred with seven individuals affected by apparent autosomal dominant otosclerosis, we identified a disease-causing variant in SMARCA4, encoding a key component of the PBAF chromatin remodelling complex. We generated CRISPR-Cas9 transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue. Mutant Smarca4+/E1548K mice exhibited marked hearing impairment demonstrated through acoustic startle response and auditory brainstem response tests. Isolated ossicles of the auditory bullae of mutant mice exhibited a highly irregular structure of the incus bone, and their in situ micro-CT studies demonstrated the anomalous structure of the incus bone, causing disruption in the ossicular chain. CONCLUSION: We demonstrate that otosclerosis can be caused by a variant in SMARCA4, with a similar phenotype of hearing impairment and abnormal bone formation in the auditory bullae in transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue.


Asunto(s)
Pérdida Auditiva , Otosclerosis , Adulto , Humanos , Ratones , Animales , Otosclerosis/genética , Otosclerosis/cirugía , Vesícula/complicaciones , Estudio de Asociación del Genoma Completo , Reflejo de Sobresalto , Fenotipo , Ratones Transgénicos , Mutación , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
11.
Clin Genet ; 105(1): 44-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37814412

RESUMEN

Neonatal ichthyosis and sclerosing cholangitis syndrome (NISCH), also known as ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis (ILVASC), is an extremely rare disease of autosomal recessive inheritance, resulting from loss of function of the tight junction protein claudin-1. Its clinical presentation is highly variable, and is characterized by liver and ectodermal involvement. Although most ILVASC cases described to date were attributed to homozygous truncating variants in CLDN1, a single missense variant CLDN1 p.Arg81His, associated with isolated skin ichthyosis phenotype, has been recently reported in a family of Moroccan Jewish descent. We now describe seven patients with ILVASC, originating from four non consanguineous families of North African Jewish ancestry (including one previously reported family), harboring CLDN1 p.Arg81His variant, and broaden the phenotypic spectrum attributed to this variant to include teeth, hair, and liver/bile duct involvement, characteristic of ILVASC. Furthermore, we provide additional evidence for pathogenicity of the CLDN1 p.Arg81His variant by transmission electron microscopy of the affected skin, revealing distorted tight junction architecture, and show through haplotype analysis in the vicinity of the CLDN1 gene, that this variant represents a founder variant in Jews of Moroccan descent with an estimated carrier frequency of 1:220.


Asunto(s)
Colangitis Esclerosante , Ictiosis , Trastornos Leucocíticos , Humanos , Recién Nacido , Alopecia/genética , Colangitis Esclerosante/genética , Claudina-1/genética , Ictiosis/genética , Judíos/genética , Trastornos Leucocíticos/complicaciones , Trastornos Leucocíticos/genética , Síndrome
12.
J Cardiovasc Transl Res ; 16(6): 1325-1331, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973666

RESUMEN

Hypertrophic and dilated cardiomyopathy (HCM, DCM) are leading causes of cardiovascular morbidity and mortality in children. The pseudokinase alpha-protein kinase 3 (ALPK3) plays an essential role in sarcomere organization and cardiomyocyte differentiation. ALPK3 coding mutations are causative of recessively inherited pediatric-onset DCM and HCM with variable expression of facial dysmorphism and skeletal abnormalities and implicated in dominantly inherited adult-onset cardiomyopathy. We now report two variants in ALPK3-a coding variant and a novel intronic variant affecting splicing. We demonstrate that compound heterozygosity for both variants is highly suggestive to be causative of infantile-onset HCM with webbed neck, and heterozygosity for the coding variant presents with adult-onset HCM. Our data validate partial penetrance of heterozygous loss-of-function ALPK3 mutations in late-onset hypertrophic cardiomyopathy and expand the genotypic spectrum of autosomal recessive ALPK3-related cardiac disease with Noonan-like features.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Adulto , Niño , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Proteínas Quinasas/metabolismo
13.
Am J Med Genet A ; 191(11): 2768-2774, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37615310

RESUMEN

Thirteen affected individuals of six generations of a single kindred presented with epiphora evident from infancy. Physical exam and Schirmer test revealed variable expression of tear deficiency, congenital punctal atresia, and dry mouth with multiple caries, without concomitant abnormalities of the ears or digits, commensurate with a diagnosis of aplasia of the lacrimal and salivary glands (ALSG). Reconstruction of the upper lacrimal drainage system was performed in some of the affected individuals. Genetic analysis, testing six affected individuals and three non-affected family members, identified a single novel heterozygous splice-site variant, c.429 + 1, G > T in fibroblast growth factor 10 (FGF10) (NM_004465.1), segregating throughout the family as expected for dominant heredity. RT-PCR assays of HEK-293 cells transfected with wild type or mutant FGF10 demonstrated that the variant causes skipping of Exon 2. Notably, individuals sharing the same variant exhibited phenotypic variability, with unilateral or bilateral epiphora, as well as variable expression of dry mouth and caries. Moreover, one of the variant carriers had no ALSG-related clinical findings, demonstrating incomplete penetrance. While coding mutations in FGF10 are known to cause malformations in the nasolacrimal system, this is the second FGF10 splice-site variant and the first donor-site variant reported to cause ALSG. Thus, our study of a unique large kindred with multiple affected individuals heterozygous for the same FGF10 variant highlights intronic splice-site mutations and phenotypic variability/partial penetrance in ALSG.

14.
NPJ Genom Med ; 8(1): 22, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580330

RESUMEN

Genomic sequences residing within introns of few genes have been shown to act as enhancers affecting expression of neighboring genes. We studied an autosomal recessive phenotypic continuum of microphthalmia, anophthalmia and ocular coloboma, with no apparent coding-region disease-causing mutation. Homozygosity mapping of several affected Jewish Iranian families, combined with whole genome sequence analysis, identified a 0.5 Mb disease-associated chromosome 2q35 locus (maximal LOD score 6.8) harboring an intronic founder variant in NHEJ1, not predicted to affect NHEJ1. The human NHEJ1 intronic variant lies within a known specifically limb-development enhancer of a neighboring gene, Indian hedgehog (Ihh), known to be involved in eye development in mice and chickens. Through mouse and chicken molecular development studies, we demonstrated that this variant is within an Ihh enhancer that drives gene expression in the developing eye and that the identified variant affects this eye-specific enhancer activity. We thus delineate an Ihh enhancer active in mammalian eye development whose variant causes human microphthalmia, anophthalmia and ocular coloboma. The findings highlight disease causation by an intronic variant affecting the expression of a neighboring gene, delineating molecular pathways of eye development.

15.
Harefuah ; 162(6): 362-365, 2023 Jun.
Artículo en Hebreo | MEDLINE | ID: mdl-37394438

RESUMEN

INTRODUCTION: Piebaldism is the dominantly inherited skin disorder clinically characterized by congenital stable and well circumscribed patches of leukoderma (depigmented skin) of ventral distribution, involving central forehead, frontal chest and abdomen and central portion of limbs, and by localized poliosis (white hair). Inherited or de novo mutations in proto-oncogene KIT, encoding the transmembrane tyrosine kinase receptor c-kit, underly the majority of piebaldism cases. Piebaldism is a disorder characterized by incomplete penetrance and variable expressivity.


Asunto(s)
Piebaldismo , Humanos , Piebaldismo/genética , Proteínas Proto-Oncogénicas c-kit/genética , Manchas Café con Leche/genética
16.
Clin Genet ; 104(5): 571-576, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37308324

RESUMEN

Knudson's "two hit" hypothesis, mostly associated with cancer, relates to a primary heterozygous germline mutation complemented by a somatic mutation in the second allele. When the somatic "second hit" is a deletion mutation, the heterozygosity due to the first hit is lost ("loss of heterozygosity"). As the rate of germline mutations is almost two orders of magnitude lower than that of somatic mutations, de-novo germline mutations causing autosomal recessive diseases in carriers of inherited heterozygous mutations are not common. We delineate a case of high myopia presenting at infancy with mild diminution of retinal responses. Exome sequencing identified a paternally inherited apparently homozygous missense mutation in RBP3. Chromosomal microarrays delineated a de-novo germline heterozygous deletion encompassing RBP3, verified through revision of WES data. Thus, we demonstrate an inherited RBP3 missense mutation complemented by a de-novo germline RBP3 deletion, causing loss of heterozygosity of the inherited mutation. We describe a novel RBP3 missense mutation, report the first isolated RBP3 deletion, and demonstrate infantile high myopia as an initial presentation of RBP3 disease. Notably, we highlight de-novo germline deletion mutations causing "loss of heterozygosity" of inherited heterozygous mutations, culminating in autosomal recessive diseases, and discuss the scarce literature.


Asunto(s)
Mutación de Línea Germinal , Miopía , Humanos , Heterocigoto , Mutación , Miopía/genética , Eliminación de Secuencia
17.
Database (Oxford) ; 20232023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311148

RESUMEN

In recent years, there are a huge influx of genomic data and a growing need for its phenotypic correlations, yet existing genomic databases do not allow easy storage and accessibility to the combined phenotypic-genotypic information. Freely accessible allele frequency (AF) databases, such as gnomAD, are crucial for evaluating variants but lack correlated phenotype data. The Sequence Read Archive (SRA) accumulates hundreds of thousands of next-generation sequencing (NGS) samples tagged by their submitters and various attributes. However, samples are stored in large raw format files, inaccessible for a common user. To make thousands of NGS samples and their corresponding additional attributes easily available to clinicians and researchers, we generated a pipeline that continuously downloads raw human NGS data uploaded to SRA using SRAtoolkit and preprocesses them using GATK pipeline. Data are then stored efficiently in a cloud data lake and can be accessed via a representational state transfer application programming interface (REST API) and a user-friendly website. We thus generated GeniePool, a simple and intuitive web service and API for querying NGS data from SRA with direct access to information related to each sample and related studies, providing significant advantages over existing databases for both clinical and research usages. Utilizing data lake infrastructure, we were able to generate a multi-purpose tool that can serve many clinical and research use cases. We expect users to explore the meta-data served via GeniePool both in daily clinical practice and in versatile research endeavours. Database URL https://geniepool.link.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Bases de Datos Factuales , Frecuencia de los Genes , Fenotipo
18.
Mol Syst Biol ; 19(8): e11407, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232043

RESUMEN

How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.


Asunto(s)
Aprendizaje Automático , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Medición de Riesgo , Causalidad
19.
Eur J Hum Genet ; 31(7): 738-743, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37055538

RESUMEN

Short-Tandem-Repeats (STRs) have long been studied for possible roles in biological phenomena, and are utilized in multiple applications such as forensics, evolutionary studies and pre-implantation-genetic-testing (PGT). The two reference genomes most used by clinicians and researchers are GRCh37/hg19 and GRCh38/hg38, both constructed using mainly short-read-sequencing (SRS) in which all-STR-containing-reads cannot be assembled to the reference genome. With the introduction of long-read-sequencing (LRS) methods and the generation of the CHM13 reference genome, also known as T2T, many previously unmapped STRs were finally localized within the human genome. We generated STRavinsky, a compact STR database for three reference genomes, including T2T. We proceeded to demonstrate the advantages of T2T over hg19 and hg38, identifying nearly double the number of STRs throughout all chromosomes. Through STRavinsky, providing a resolution down to a specific genomic coordinate, we demonstrated extreme propensity of TGGAA repeats in p arms of acrocentric chromosomes, substantially corroborating early molecular studies suggesting a possible role in formation of Robertsonian translocations. Moreover, we delineated unique propensity of TGGAA repeats specifically in chromosome 16q11.2 and in 9q12. Finally, we harness the superior capabilities of T2T and STRavinsky to generate PGTailor, a novel web application dramatically facilitating design of STR-based PGT tests in mere minutes.


Asunto(s)
Genómica , Programas Informáticos , Humanos , Genómica/métodos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite
20.
Proc Natl Acad Sci U S A ; 120(7): e2217831120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745799

RESUMEN

Myopathy is the main adverse effect of the widely prescribed statin drug class. Statins exert their beneficial effect by inhibiting HMG CoA-reductase, the rate-controlling enzyme of the mevalonate pathway. The mechanism of statin myopathy is yet to be resolved, and its treatment is insufficient. Through homozygosity mapping and whole exome sequencing, followed by functional analysis using confocal microscopy and biochemical and biophysical methods, we demonstrate that a distinct form of human limb girdle muscular disease is caused by a pathogenic homozygous loss-of-function missense mutation in HMG CoA reductase (HMGCR), encoding HMG CoA-reductase. We biochemically synthesized and purified mevalonolactone, never administered to human patients before, and establish the safety of its oral administration in mice. We then show that its oral administration is effective in treating a human patient with no significant adverse effects. Furthermore, we demonstrate that oral mevalonolactone resolved statin-induced myopathy in mice. We conclude that HMGCR mutation causes a late-onset severe progressive muscular disease, which shows similar features to statin-induced myopathy. Our findings indicate that mevalonolactone is effective both in the treatment of hereditary HMGCR myopathy and in a murine model of statin myopathy. Further large clinical trials are in place to enable the clinical use of mevalonolactone both in the rare orphan disease and in the more common statin myopathy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Animales , Humanos , Ratones , Autoanticuerpos/genética , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Ácido Mevalónico , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...