Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 10(7)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261775

RESUMEN

Since the advent of super-resolution microscopy, countless approaches and studies have been published contributing significantly to our understanding of cellular processes. With the aid of chromatin-specific fluorescence labeling techniques, we are gaining increasing insight into gene regulation and chromatin organization. Combined with super-resolution imaging and data analysis, these labeling techniques enable direct assessment not only of chromatin interactions but also of the function of specific chromatin conformational states.


Asunto(s)
Cromatina , Microscopía Fluorescente/métodos , Aprendizaje Profundo , Imagen Individual de Molécula/métodos
2.
Front Genet ; 7: 114, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446198

RESUMEN

Nuclear texture analysis is a well-established method of cellular pathology. It is hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These limits have been overcome by a variety of super-resolution approaches. An especially promising approach to chromatin texture analysis is single molecule localization microscopy (SMLM) as it provides the highest resolution using fluorescent based methods. At the present state of the art, using fixed whole cell samples and standard DNA dyes, a structural resolution of chromatin in the 50-100 nm range is obtained using SMLM. We highlight how the combination of localization microscopy with standard fluorophores opens the avenue to a plethora of studies including the spatial distribution of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate the functional organization of chromatin. These views are based on our experience as well as on recently published research in this field.

3.
Exp Cell Res ; 343(2): 97-106, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341267

RESUMEN

Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Microscopía Fluorescente/métodos , Nanoestructuras/química , Imagen Individual de Molécula/métodos , Animales , Chlorocebus aethiops , Cromosomas/metabolismo , Drosophila melanogaster , Células Vero
4.
Proc Natl Acad Sci U S A ; 112(47): 14635-40, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26561583

RESUMEN

During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Cromosomas de los Mamíferos/metabolismo , Microscopía/métodos , Fase Paquiteno , Animales , Centrómero/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Modelos Biológicos , Complejo Sinaptonémico/metabolismo , Transcripción Genética
5.
Methods Mol Biol ; 464: 389-401, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18951196

RESUMEN

In this chapter we present the method of spatially modulated illumination (SMI) microscopy, a (far-field) fluorescence microscopy technique featuring structured illumination obtained via a standing wave field laser excitation pattern. While this method does not provide higher optical resolution, it has been proven a highly valuable tool to access structural parameters of fluorescently labeled macromolecular structures in cells. SMI microscopy has been used to measure relative positions with a reproducibility of <2 nm between fluorescing objects. Among others, we have measured size distributions of protein clusters with an accuracy much better than the resolution achievable e.g. in confocal microscopy. The advantages of the SMI microscope over other (ultra-)high resolution light microscopes are its easy sample preparation and microscope handling as well as the comparably fast acquisition times and large fields of view.


Asunto(s)
Núcleo Celular/metabolismo , Microscopía Fluorescente/métodos , Células HeLa , Humanos , Microscopía Fluorescente/instrumentación
6.
Nat Protoc ; 2(10): 2640-6, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17948007

RESUMEN

We describe the usage of the spatially modulated illumination (SMI) microscope to estimate the sizes (and/or positions) of fluorescently labeled cellular nanostructures, including a brief introduction to the instrument and its handling. The principle setup of the SMI microscope will be introduced to explain the measures necessary for a successful nanostructure analysis, before the steps for sample preparation, data acquisition and evaluation are given. The protocol starts with cells already attached to the cover glass. The protocol and duration outlined here are typical for fixed specimens; however, considerably faster data acquisition and in vivo measurements are possible.


Asunto(s)
Células/ultraestructura , Microscopía Fluorescente/métodos , Nanoestructuras/análisis , Calibración , Microscopía Fluorescente/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...