Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Methods Mol Biol ; 2786: 25-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814389

RESUMEN

Self-replicating RNA derived from the genomes of positive-strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.


Asunto(s)
Genoma Viral , ARN Viral , ARN Viral/genética , Virus ARN Monocatenarios Positivos/genética , Replicación Viral/genética , Humanos , Animales
2.
Pathogens ; 11(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365021

RESUMEN

In the context of climate change, globalization, and enhanced human traveling, arboviruses continue to represent a threat to public health. West Nile and Usutu viruses are mosquito-borne viruses belonging to the Flaviviridae family (Flavivirus genus) and members of the Japanese encephalitis virus serocomplex. Included in the Togaviridae family (Alphavirus genus), the Sindbis virus is also vectored by mosquitoes. In the present study, we aimed to analyze the presence of antibodies concerning the abovementioned viruses in migratory and resident birds in the South-Eastern region of Romania, as avian hosts represent the main reservoir for human infection. Blood samples were collected from wild birds between May 2018 and October 2019 in nine locations from three counties. All the samples were serologically tested by ELISA and a serum neutralization test. Overall, a seroprevalence of 8.72% was registered for the West Nile virus, 2.71% for the Usutu virus, and 0% for the Sindbis virus. To our best knowledge, this is the first large-scale comprehensive study to assess the West Nile virus seropositivity in wild birds and the first serological confirmation of the Usutu virus in wild birds in Romania. Moreover, this is the only follow-up study reviewing the current seroprevalence of the Sindbis virus in Romania since 1975.

3.
Transbound Emerg Dis ; 69(5): e2506-e2515, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35538046

RESUMEN

West Nile virus (WNV) is a zoonotic mosquito-borne virus classified as family Flaviviridae and genus Flavivirus. The first WNV outbreak in humans in the Republic of Serbia was recorded in 2012. Equids and dogs can show clinical symptoms after WNV infection and are often used as sentinels. This study aimed to (i) give insight into seropositivity for WNV in clinically healthy dog and horse sera in different regions of Serbia and (ii) compare diagnostic value of 'in-house' and commercially available indirect immunofluorescence (IFA) and enzyme-linked immunoassay (ELISA) tests to 'gold standard' virus neutralization test (VNT). Due to cross-reactivity, sera were tested for Usutu virus and tick-borne encephalitis virus in VNT based on the epidemiological data of field presence. Blood sera of dogs (n = 184) and horses (n = 232) were collected from 2011 to 2013. The seropositivity was confirmed by VNT in 36.9 % tested dog sera and 34.9% tested horse sera with highest positivity in regions near two big rivers, while in four dog and seven horse sera, positivity resulted from Usutu virus infection. Comparative results of diagnostic tests in dogs ranged from 18.7 % seropositivity by 'in-house' ELISA to 31.9% by commercially available ELISA. In horses, seropositivity ranged from 36.2% by 'in-house' IFA to 32.5% by commercially available IFA and from 26.3% by 'in-house' IgG ELISA to 20.9% by commercially available ELISA. There were no statistically significant differences according to the McNemar test between 'in-house' and commercially available IFA and ELISA test in horse sera, while the same was not true for two ELISAs used in dog sera (χ2  = 8.647, p = .003). Established seropositivity in dogs and horses was in accordance with the epidemiological situation and WNV spread in the Republic of Serbia and proven Usutu virus co-circulation. 'In-house' tests remain a valuable tool in early diagnostics of WNV.


Asunto(s)
Enfermedades de los Perros , Virus de la Encefalitis Transmitidos por Garrapatas , Enfermedades de los Caballos , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Anticuerpos Antivirales , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Perros , Ensayo de Inmunoadsorción Enzimática/veterinaria , Flavivirus , Enfermedades de los Caballos/diagnóstico , Enfermedades de los Caballos/epidemiología , Caballos , Humanos , Inmunoglobulina G , Serbia/epidemiología , Pruebas Serológicas/veterinaria , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
4.
Viruses ; 13(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34960732

RESUMEN

Mosquitoes collected from mid-December 2020 to early March 2021 from hibernacula in northeastern Germany, a region of West Nile virus (WNV) activity since 2018, were examined for WNV-RNA. Among the 6101 mosquitoes tested in 722 pools of up to 12 specimens, one pool of 10 Culex pipiens complex mosquitoes collected in early March 2021 in the cellar of a medieval castle in Rosslau, federal state of Saxony-Anhalt, tested positive. Subsequent mosquito DNA analysis produced Culex pipiens biotype pipiens. The pool homogenate remaining after nucleic acid extraction failed to grow the virus on Vero and C6/36 cells. Sequencing of the viral NS2B-NS3 coding region, however, demonstrated high homology with virus strains previously collected in Germany, e.g., from humans, birds, and mosquitoes, which have been designated the East German WNV clade. The finding confirms the expectation that WNV can overwinter in mosquitoes in Germany, facilitating an early start to the natural transmission season in the subsequent year. On the other hand, the calculated low infection prevalence of 0.016-0.20%, depending on whether one or twelve of the mosquitoes in the positive pool was/were infected, indicates a slow epidemic progress and mirrors the still-hypoendemic situation in Germany. In any case, local overwintering of the virus in mosquitoes suggests its long-term persistence and an enduring public health issue.


Asunto(s)
Culicidae/virología , Mosquitos Vectores/virología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/aislamiento & purificación , Animales , Culicidae/clasificación , Culicidae/fisiología , Alemania , Humanos , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Estaciones del Año , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/genética
5.
Virus Evol ; 7(2): veab085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703624

RESUMEN

Proactive approaches in preventing future epidemics include pathogen discovery prior to their emergence in human and/or animal populations. Playing an important role in pathogen discovery, high-throughput sequencing (HTS) enables the characterization of microbial and viral genetic diversity within a given sample. In particular, metagenomic HTS allows the unbiased taxonomic profiling of sequences; hence, it can identify novel and highly divergent pathogens such as viruses. Newly discovered viral sequences must be further investigated using genomic characterization, molecular and serological screening, and/or in vitro and in vivo characterization. Several outbreak and surveillance studies apply unbiased generic HTS to characterize the whole genome sequences of suspected pathogens. In contrast, this study aimed to screen for novel and unexpected pathogens in previously generated HTS datasets and use this information as a starting point for the establishment of an early warning system (EWS). As a proof of concept, the EWS was applied to HTS datasets and archived samples from the 2018-9 West Nile virus (WNV) epidemic in Germany. A metagenomics read classifier detected sequences related to genome sequences of various members of Riboviria. We focused the further EWS investigation on viruses belonging to the families Peribunyaviridae and Reoviridae, under suspicion of causing co-infections in WNV-infected birds. Phylogenetic analyses revealed that the reovirus genome sequences clustered with sequences assigned to the species Umatilla virus (UMAV), whereas a new peribunyavirid, tentatively named 'Hedwig virus' (HEDV), belonged to a putative novel genus of the family Peribunyaviridae. In follow-up studies, newly developed molecular diagnostic assays detected fourteen UMAV-positive wild birds from different German cities and eight HEDV-positive captive birds from two zoological gardens. UMAV was successfully cultivated in mosquito C6/36 cells inoculated with a blackbird liver. In conclusion, this study demonstrates the power of the applied EWS for the discovery and characterization of unexpected viruses in repurposed sequence datasets, followed by virus screening and cultivation using archived sample material. The EWS enhances the strategies for pathogen recognition before causing sporadic cases and massive outbreaks and proves to be a reliable tool for modern outbreak preparedness.

6.
Viruses ; 13(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201636

RESUMEN

Pestiviruses express the unique essential envelope protein Erns, which exhibits RNase activity, is attached to membranes by a long amphipathic helix, and is partially secreted from infected cells. The RNase activity of Erns is directly connected with pestivirus virulence. Formation of homodimers and secretion of the protein are hypothesized to be important for its role as a virulence factor, which impairs the host's innate immune response to pestivirus infection. The unusual membrane anchor of Erns raises questions with regard to proteolytic processing of the viral polyprotein at the Erns carboxy-terminus. Moreover, the membrane anchor is crucial for establishing the critical equilibrium between retention and secretion and ensures intracellular accumulation of the protein at the site of virus budding so that it is available to serve both as structural component of the virion and factor controlling host immune reactions. In the present manuscript, we summarize published as well as new data on the molecular features of Erns including aspects of its interplay with the other two envelope proteins with a special focus on the biochemistry of the Erns membrane anchor.


Asunto(s)
Membrana Celular/metabolismo , Ribonucleasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Vesículas Extracelulares/metabolismo , Secuencias Hélice-Asa-Hélice , Viabilidad Microbiana , Mutación , Pestivirus/química , Pestivirus/metabolismo , Infecciones por Pestivirus/inmunología , Infecciones por Pestivirus/virología , Poliproteínas/química , Poliproteínas/metabolismo , Multimerización de Proteína , Proteolisis , Ribonucleasas/química , Ribonucleasas/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Ensamble de Virus , Liberación del Virus
7.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298900

RESUMEN

Pestiviruses contain three envelope proteins: Erns, E1, and E2. Expression of HA-tagged E1 or mutants thereof showed that E1 forms homodimers and -trimers. C123 and, to a lesser extent, C171, affected the oligomerization of E1 with a double mutant C123S/C171S preventing oligomerization completely. E1 also establishes disulfide linked heterodimers with E2, which are crucial for the recovery of infectious viruses. Co-expression analyses with the HA-tagged E1 wt/E1 mutants and E2 wt/E2 mutants demonstrated that C123 in E1 and C295 in E2 are the critical sites for E1/E2 heterodimer formation. Introduction of mutations preventing E1/E2 heterodimer formation into the full-length infectious clone of BVDV CP7 prevented the recovery of infectious viruses, proving that C123 in E1 and C295 in E2 play an essential role in the BVDV life cycle, and further support the conclusion that heterodimer formation is the crucial step. Interestingly, we found that the retention signal of E1 is mandatory for intracellular localization of the heterodimer, so that absence of the E1 retention signal directs the heterodimer to the cell surface even though the E2 retention signal is still present. The covalent linkage between E1 and E2 plays an essential role for this process.


Asunto(s)
Pestivirus/genética , Proteínas del Envoltorio Viral/genética , Animales , Bovinos , Línea Celular , Cricetinae , Dimerización , Mutación/genética , Conejos , Internalización del Virus
8.
J Virol ; 95(15): e0052121, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011544

RESUMEN

Pestiviruses are members of the family Flaviviridae, a group of enveloped viruses that bud at intracellular membranes. Pestivirus particles contain three glycosylated envelope proteins, Erns, E1, and E2. Among them, E1 is the least characterized concerning both biochemical features and function. E1 from bovine viral diarrhea virus (BVDV) strain CP7 was analyzed with regard to its intracellular localization and membrane topology. Here, it is shown that even in the absence of other viral proteins, E1 is not secreted or expressed at the cell surface but localizes predominantly in the endoplasmic reticulum (ER). Using engineered chimeric transmembrane domains with sequences from E1 and vesicular stomatitis virus G protein, the E1 ER-retention signal could be narrowed down to six fully conserved polar residues in the middle part of the transmembrane domain of E1. Retention was observed even when several of these polar residues were exchanged for alanine. Mutations with a strong impact on E1 retention prevented recovery of infectious viruses when tested in the viral context. Analysis of the membrane topology of E1 before and after the signal peptide cleavage via a selective permeabilization and an in vivo labeling approach revealed that mature E1 is a typical type I transmembrane protein with a single span transmembrane anchor at its C terminus, whereas it adopts a hairpin-like structure with the C terminus located in the ER lumen when the precleavage situation is mimicked by blocking the cleavage site between E1 and E2. IMPORTANCE The shortage of specific antibodies against E1, making detection and further analysis of E1 difficult, resulted in a lack of knowledge on E1 compared to Erns and E2 with regard to biosynthesis, structure, and function. It is known that pestiviruses bud intracellularly. Here, we show that E1 contains its own ER retention signal: six fully conserved polar residues in the middle part of the transmembrane domain are shown to be the determinants for ER retention of E1. Moreover, those six polar residues could serve as a functional group that intensely affect the generation of infectious viral particles. In addition, the membrane topology of E1 has been determined. In this context, we also identified dynamic changes in membrane topology of E1 with the carboxy terminus located on the luminal side of the ER in the precleavage state and relocation of this sequence upon signal peptidase cleavage. Our work provides the first systematic analysis of the pestiviral E1 protein with regard to its biochemical and functional characteristics.


Asunto(s)
Virus de la Diarrea Viral Bovina/metabolismo , Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína/fisiología , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Membrana Celular/metabolismo , Cricetinae , Virus de la Diarrea Viral Bovina/genética , Glicoproteínas de Membrana/metabolismo , Conformación Proteica , Señales de Clasificación de Proteína/genética , Conejos , Proteínas del Envoltorio Viral/genética
9.
Ticks Tick Borne Dis ; 12(4): 101693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33690089

RESUMEN

Tick-borne encephalitis virus (TBEV) is a vector-borne pathogen that can cause serious neurological symptoms in humans. Across large parts of Eurasia TBEV is found in three traditional subtypes: the European, the Siberian and the Far-eastern subtype. Small mammalian animals play an important role in the transmission cycle as they enable the spread of TBEV among the vector tick population. To assess the impact of TBEV infection on its natural hosts, outbred bank voles (Myodes glareolus) were inoculated with one out of four European TBEV strains. Three of these TBEV strains were recently isolated in Germany. The forth one was the TBEV reference strain Neudörfl. Sampling points at 7, 14, 28, and 56 days post inoculation allowed the characterization of the course of infection. At each time point, six animals per strain were euthanized and eleven organ samples (brain, spine, lung, heart, small and large intestine, liver, spleen, kidney, bladder, sexual organ) as well as whole blood and serum samples were collected. The majority of bank voles (92/96) remained clinically unaffected after the inoculation with TBEV, but still developed a systemic infection during the first week, which transitioned to a viraemia and an infestation of the brain in some animals for the remainder of the first month. Viral RNA was found in whole blood samples of several animals (50/96), but only in a small fraction of the corresponding serum samples (4/50). From the whole blood, virus was successfully reisolated in cell culture until 14 days after inoculation. Less than five percent of all inoculated bank voles (4/96) displayed signs of distress in combination with a rapid weight loss and had to be euthanized prematurely. Overall, the recently isolated TBEV strains showed marked differences, such as a more frequent development of long-term viraemia and a higher detection rate of viral RNA in various organs, in comparison to the reference strain Neudörfl. Overall, our data suggest that the bank vole is a potential amplifying host in the TBEV transmission cycle and appears to be highly adapted to circulating TBEV strains.


Asunto(s)
Arvicolinae , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/veterinaria , Enfermedades de los Roedores/virología , Animales , Encefalitis Transmitida por Garrapatas/virología , Femenino , Alemania , Masculino
10.
Insects ; 12(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535457

RESUMEN

Biological control of the Mexican fruit fly, Anastrepha ludens, is mainly carried out by releasing parasitoids, such as Diachasmimorpha longicaudata, and by applying entomopathogenic fungi (EPF), such as Metarhizium anisopliae, Beauveria bassiana, or Isaria fumosorosea, which can be applied to the soil or dispersed using infective devices. The combined use of two or more biocontrol agents could improve A. ludens control, but IGP between natural enemies, if it occurs, may have negative effects. We evaluated the effects of EPF on D. longicaudata. First, we determined the susceptibility of adults of D. longicaudata to strains of EPF (Metarhizium robertsii strain V3-160 and M. anisopliae strain MAAP1). We also evaluated the infection of these two fungi on A. ludens larvae parasitized by D. longicaudata. Finally, we determined sub-lethal effects on adults of D. longicaudata that emerged from larvae that had been exposed to low concentrations of M. robertsii. Both fungi caused moderate mortality to D. longicaudata adults. There were no adverse effects on the longevity of parasitoids that emerged from parasitized larvae exposed to M. robertsii. Based on these results, we argue that M. robertsii has the potential to be used for biocontrol of A. ludens, with limited risk to D. longicaudata adults.

11.
J Sci Food Agric ; 101(7): 2756-2766, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33150630

RESUMEN

BACKGROUND: Mangoes are tropical fruits appreciated worldwide but are extremely perishable, being susceptible to decay, pest infestation and fungal diseases. Using the flavorful and highly valued 'Manila' cultivar, we examined the effect of second-generation chitosan coatings on shelf-life, phenolic compound variation, phytohormones, pest infestation by fruit flies (Anastrepha obliqua) and anthracnose disease caused by the fungus Colletotrichum gloeosporioides. RESULTS: We observed almost total elimination of A. obliqua eggs with 10 and 20 g L-1 chitosan in diluted acetic acid and a five- to sixfold reduction in anthracnose damage. Treatment with 20 g L-1 chitosan also extended the shelf-life. External (skin) and internal (pulp) discoloration processes were delayed. Fruit firmness was higher when compared with control and acetic acid treatments, and total soluble solids were lower in chitosan-treated fruit. Targeted and non-targeted metabolomics analyses on chitosan-coated fruit identified some phenolic compounds related to the tannin pathway. In addition, abscisic acid and jasmonic acid in the peel were downregulated in chitosan-coated mango peels. Both phytohormones and phenolic content may explain the reduced susceptibility of mangoes to anthracnose development and A. obliqua egg eclosion or larval development. CONCLUSIONS: We conclude that chitosan coatings represent an effective postharvest treatment that significantly reduces anthracnose disease, inhibits A. obliqua egg eclosion and significantly extends 'Manila' mango shelf-life, a key factor currently inhibiting large-scale commercialization of this valuable fruit. © 2020 Society of Chemical Industry.


Asunto(s)
Quitosano/química , Colletotrichum/fisiología , Conservación de Alimentos/métodos , Frutas/química , Mangifera/microbiología , Mangifera/parasitología , Tephritidae/fisiología , Animales , Frutas/microbiología , Frutas/parasitología , Mangifera/química
12.
Pathogens ; 9(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987685

RESUMEN

West Nile virus (WNV) is a mosquito-borne agent that has also been isolated from several tick species. Vector competence of Ixodes ricinus, one of the most common tick species in Europe, has been poorly investigated for WNV to date. As such, to evaluate the vector competence, laboratory reared Ixodes ricinus nymphs were in vitro fed with WNV lineage 1 infectious blood, allowed to molt, and the resulting females artificially fed to study the virus transmission. Furthermore, we studied the kinetics of WNV replication in ticks after infecting nymphs using an automatic injector. Active replication of WNV was detected in injected nymphs from day 7 post-infection until 28 dpi. In the nymphs infected by artificial feeding, the transstadial transmission of WNV was confirmed molecularly in 46.7% of males, while virus transmission during in vitro feeding of I. ricinus females originating from infected nymphs was not registered. The long persistence of WNV in I. ricinus ticks did not correlate with the transmission of the virus and it is unlikely that I. ricinus represents a competent vector. However, there is a potential reservoir role that this tick species can play, with hosts potentially acquiring the viral agent after ingesting the infected ticks.

13.
Viruses ; 12(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354202

RESUMEN

In 2018, West Nile virus (WNV) broke out for the first time in Germany, with continuation of the epidemic in 2019, involving birds, horses and humans. To identify vectors and characterize the virus, mosquitoes were collected in both years in zoological gardens and on a horse meadow immediately following the diagnosis of disease cases in birds and horses. Mosquitoes were identified and screened for WNV by qRT-PCR, with virus-positive samples being sequenced for the viral envelope protein gene. While no positive mosquitoes were found in 2018, seven mosquito pools tested positive for WNV in 2019 in the Tierpark (Wildlife Park) Berlin. The pools consisted of Cx. pipiens biotype pipiens (n = 5), and a mixture of Cx. p. biotype pipiens and Cx. p. biotype molestus (n = 2), or hybrids of these, and were collected between 13 August and 24 September 2019. The virus strain turned out to be nearly identical to two WNV strains isolated from birds diseased in 2018 in eastern Germany. The findings represent the first demonstration of WNV in mosquitoes in Germany and include the possibility of local overwintering of the virus.


Asunto(s)
Culicidae/virología , Enfermedades de los Caballos/transmisión , Mosquitos Vectores/virología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/fisiología , Animales , Enfermedades de las Aves/virología , Aves/virología , Culicidae/fisiología , Alemania , Enfermedades de los Caballos/virología , Caballos , Mosquitos Vectores/fisiología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética
14.
Viruses ; 12(4)2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326472

RESUMEN

One year after the first autochthonous transmission of West Nile virus (WNV) to birds and horses in Germany, an epizootic emergence of WNV was again observed in 2019. The number of infected birds and horses was considerably higher compared to 2018 (12 birds, two horses), resulting in the observation of the first WNV epidemy in Germany: 76 cases in birds, 36 in horses and five confirmed mosquito-borne, autochthonous human cases. We demonstrated that Germany experienced several WNV introduction events and that strains of a distinct group (Eastern German WNV clade), which was introduced to Germany as a single introduction event, dominated mosquito, birds, horse and human-related virus variants in 2018 and 2019. Virus strains in this clade are characterized by a specific-Lys2114Arg mutation, which might lead to an increase in viral fitness. Extraordinary high temperatures in 2018/2019 allowed a low extrinsic incubation period (EIP), which drove the epizootic emergence and, in the end, most likely triggered the 2019 epidemic. Spatiotemporal EIP values correlated with the geographical WNV incidence. This study highlights the risk of a further spread in Germany in the next years with additional human WNV infections. Thus, surveillance of birds is essential to provide an early epidemic warning and thus, initiate targeted control measures.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Zoonosis Virales/epidemiología , Zoonosis Virales/virología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental , Animales , Teorema de Bayes , Enfermedades Transmisibles Emergentes/transmisión , Epidemias , Genoma Viral , Geografía Médica , Alemania/epidemiología , Humanos , Filogenia , Filogeografía , Vigilancia de la Población , Medición de Riesgo , Zoonosis Virales/transmisión , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/genética
15.
Zoonoses Public Health ; 67(4): 416-424, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162489

RESUMEN

West Nile virus (WNV), a zoonotic arbovirus, has recently established an autochthonous transmission cycle in Germany. In dead-end hosts like humans and horses the WNV infection may cause severe symptoms in the central nervous system. In nature, WNV is maintained in an enzootic transmission cycle between birds and ornithophilic mosquitoes. Bridge vector species, such as members of the Culex pipiens complex and Aedes spp., also widely distributed in Germany, might transmit WNV to other vertebrate host species. This study determined and compared the vector competence of field-collected northern-German Cx. pipiens biotype pipiens and laboratory-reared Ae. vexans Green River (GR) for WNV lineage 1 (strain: Magpie/Italy/203204) and WNV lineage 2 (strain: "Austria") under temperatures typical for northern Germany in spring/summer and autumn. For assessment of vector competence, 7- to 14-day-old female mosquitoes were offered a WNV containing blood meal via Hemotek membrane feeding system or cotton-stick feeding. After incubation at 18°C respectively 24°C for 14 days engorged female mosquitoes were salivated and dissected for determination of infection, dissemination and transmission rates by reverse transcriptase quantitative real-time PCR (RT-qPCR). Both Ae. vexans GR and Cx. pipiens biotype pipiens were infected with both tested WNV strains and tested 14 days post-inoculation. Disseminated infections were detected only in Ae. vexans GR incubated at 18°C and in Cx. pipiens pipiens incubated at 24°C after infection with WNV lineage 1. Transmission of WNV lineage 1 was detected in Cx. pipiens pipiens incubated at 24°C. These results indicate that Cx. pipiens pipiens from Northern Germany may be involved in the transmission of WNV, also to dead-end hosts like humans and horses.


Asunto(s)
Aedes , Culex , Mosquitos Vectores/virología , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/fisiología , Animales , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Células Vero
16.
J Econ Entomol ; 113(3): 1088-1096, 2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31993643

RESUMEN

The Mexican fruit fly, Anastrepha ludens Loew, is a significant pest in mango and citrus production areas of Mexico. In this study, we evaluated the effects of some geographic characteristics, rainfall period, soil micro-environmental, and soil coverage variables on the occurrence of entomopathogenic fungi (EPF) associated with A. ludens larvae in soils of mango, grapefruit and mixed crops in central Veracruz state, Mexico. EPF isolates were characterized morphologically and identified by sequence analysis of elongation factor (EF1-1018F, EF1-1620R). We recorded four species of EPF (Metarhizium robertsii J.F. Bisch, S.A. Rehner & Humber [Hypocreales: Cordycipitaceae], M. brunneum Petch [Hypocreales: Cordycipitaceae], M. pinghaense Q.T. Chen & H.L. Guo [Hypocreales: Cordycipitaceae], and Beauveria bassiana (Balsamo) Vuillemin [Hypocreales: Cordycipitaceae]), of which Metarhizium robertsii was the most abundant and the most virulent. Also, we found that rainfall period, organic matter, coverage of herbs and forbs, and calcium levels modulated EPF occurrence. We estimated lethal concentrations for A. ludens larvae of the four most promising isolates, V3-123, V3-160, V1-332, and V3-369. Our results suggest that M. robertsii obtained from agricultural soils holds potential as a biological control agent for A. ludens.


Asunto(s)
Beauveria , Metarhizium , Tephritidae , Animales , Larva , México , Control Biológico de Vectores , Suelo , Virulencia
17.
Viruses ; 11(11)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731773

RESUMEN

Tick-borne encephalitis is the most important tick-transmitted zoonotic virus infection in Eurasia, causing severe neurological symptoms in humans. The causative agent, the tick-borne encephalitis virus (TBEV), circulates between ticks and a variety of mammalian hosts. To study the interaction between TBEV and one of its suspected reservoir hosts, bank voles of the Western evolutionary lineage were inoculated subcutaneously with either one of eight TBEV strains or the related attenuated Langat virus, and were euthanized after 28 days. In addition, a subset of four strains was characterized in bank voles of the Carpathian linage. Six bank voles were inoculated per strain, and were housed together in groups of three with one uninfected in-contact animal each. Generally, most bank voles did not show any clinical signs over the course of infection. However, one infected bank vole died and three had to be euthanized prematurely, all of which had been inoculated with the identical TBEV strain (Battaune 17-H9, isolated in 2017 in Germany from a bank vole). All inoculated animals seroconverted, while none of the in-contact animals did. Viral RNA was detected via real-time RT-PCR in the whole blood samples of 31 out of 74 inoculated and surviving bank voles. The corresponding serum sample remained PCR-negative in nearly all cases (29/31). In addition, brain and/or spine samples tested positive in 11 cases, mostly correlating with a positive whole blood sample. Our findings suggest a good adaption of TBEV to bank voles, combining in most cases a low virulence phenotype with detectable virus replication and hinting at a reservoir host function of bank voles for TBEV.


Asunto(s)
Arvicolinae/virología , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/veterinaria , Enfermedades de los Roedores/virología , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Células Cultivadas , Reservorios de Enfermedades/virología , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Humanos , Inmunoensayo , ARN Viral , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades de los Roedores/diagnóstico , Evaluación de Síntomas
18.
Trop Med Infect Dis ; 4(3)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438608

RESUMEN

West Nile virus (WNV) is a zoonotic flavivirus whose transmission cycle in nature includes wild birds as amplifying hosts and ornithophilic mosquito vectors. Bridge vectors can transmit WNV to mammal species potentially causing West Nile Fever. Wild bird migration is a mode of WNV introduction into new areas. The Danube Delta Biosphere Reserve (DDBR) is a major stopover of wild birds migrating between Europe and Africa. The aim of this study was to investigate the presence of WNV in the DDBR during the 2016 transmission season in wild birds and mosquitoes. Blood from 68 wild birds (nine different species) trapped at four different locations was analyzed by competitive ELISA and Virus Neutralization Test (VNT), revealing positive results in 8/68 (11.8%) of the wild birds by ELISA of which six samples (three from juvenile birds) were confirmed seropositive by VNT. Mosquitoes (n = 6523, 5 genera) were trapped with CDC Mini Light traps at two locations and in one location resting mosquitoes were caught. The presence of WNV RNA was tested in 134 pools by reverse transcription quantitative PCR (RT-qPCR). None of the pools was positive for WNV-specific RNA. Based on the obtained results, WNV was circulating in the DDBR during 2016.

19.
Food Chem ; 285: 119-129, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797326

RESUMEN

Mango byproducts, such as peels, contain high levels of antioxidants and fiber and represent important sources of nutraceuticals and pharmacological products. Fruit are collected at the mature green stage then stored and ripened, undergoing several structural and molecular changes over the course of this process. However, very little is known regarding the content and nature of antioxidant compounds in peels of elite and local cultivars during postharvest shelf life (PSL). We screened the phenolic compound content of six cultivars during PSL, including elite (Kent, Tommy, and Ataulfo) and local (Manila, Manililla, and Criollo) mangoes, using a targeted metabolomics approach. We determined that Ataulfo mangoes exhibited the highest content of phenolic compounds during PSL. Untargeted metabolomics and comparative proteomics in Ataulfo and Manililla showed these cultivars to be significant sources of phenolic and lipidic compounds, with the latter cultivar also representing an interesting candidate as a new source for nutraceutical products.


Asunto(s)
Antioxidantes/química , Mangifera/química , Ácido Abscísico/análisis , Aminoácidos Cíclicos/análisis , Cromatografía Líquida de Alta Presión , Frutas/química , Frutas/metabolismo , Mangifera/metabolismo , Espectrometría de Masas , Fenoles/análisis , Filipinas , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Proteómica
20.
J Infect Dis ; 218(suppl_5): S360-S364, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30053054

RESUMEN

Work with infectious Ebola virus is restricted to biosafety level (BSL) 4 laboratories. To overcome this limitation, life cycle modeling systems, which recapitulate part or all of the virus life cycle under BSL-1 or -2 conditions, have been developed. The tetracistronic transcription and replication-competent virus-like particle (trVLP) system is currently the most advanced of these systems and is particularly useful for drug screening. However, previous versions have used luciferase reporters, limiting the types of screening assays that can be performed. Here we describe the generation and optimization of a green fluorescent protein-expressing tetracistronic trVLP system, enabling high-content imaging and flow cytometry approaches.Summary: Transcription and replication-competent virus-like particle (trVLP) systems are powerful tools to model the life cycle of highly pathogenic Ebola viruses. Here we describe the generation of a novel, GFP-based trVLP system that allows high content imaging and flow cytometry approaches.


Asunto(s)
Ebolavirus/genética , Genoma Viral/genética , Proteínas Fluorescentes Verdes/genética , Transcripción Genética/genética , Replicación Viral/genética , Línea Celular , Genes Reporteros/genética , Células HEK293 , Fiebre Hemorrágica Ebola/virología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...