Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(4): e0006824, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38517170

RESUMEN

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Asunto(s)
Proteínas Bacterianas , Enfermedades de los Peces , Animales , Proteínas Bacterianas/metabolismo , Virulencia , Proteínas Motoras Moleculares/metabolismo , Flavobacterium , Enfermedades de los Peces/microbiología
2.
Front Cell Infect Microbiol ; 13: 1093393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816589

RESUMEN

Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Virulencia , Péptido Hidrolasas/metabolismo , Pez Cebra , Infecciones por Flavobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Factores de Virulencia/metabolismo , Flavobacterium
3.
Front Cell Infect Microbiol ; 12: 1029833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325469

RESUMEN

Flavobacterium columnare, which causes columnaris disease, is one of the costliest pathogens in the freshwater fish-farming industry. The virulence mechanisms of F. columnare are not well understood and current methods to control columnaris outbreaks are inadequate. Iron is an essential nutrient needed for metabolic processes and is often required for bacterial virulence. F. columnare produces siderophores that bind ferric iron for transport into the cell. The genes needed for siderophore production have been identified, but other components involved in F. columnare iron uptake have not been studied in detail. We identified the genes encoding the predicted secreted heme-binding protein HmuY, the outer membrane iron receptors FhuA, FhuE, and FecA, and components of an ATP binding cassette (ABC) transporter predicted to transport ferric iron across the cytoplasmic membrane. Deletion mutants were constructed and examined for growth defects under iron-limited conditions and for virulence against zebrafish and rainbow trout. Mutants with deletions in genes encoding outer membrane receptors, and ABC transporter components exhibited growth defects under iron-limited conditions. Mutants lacking multiple outer membrane receptors, the ABC transporter, or HmuY retained virulence against zebrafish and rainbow trout mirroring that exhibited by the wild type. Some mutants predicted to be deficient in multiple steps of iron uptake exhibited decreased virulence. Survivors of exposure to such mutants were partially protected against later infection by wild-type F. columnare.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Virulencia/genética , Infecciones por Flavobacteriaceae/microbiología , Pez Cebra , Enfermedades de los Peces/microbiología , Flavobacterium/genética , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiología , Sideróforos/genética , Sideróforos/metabolismo , Hierro/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
4.
Appl Environ Microbiol ; 88(17): e0094822, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35969053

RESUMEN

Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish. F. columnare virulence mechanisms are not well understood, and current methods to control columnaris disease are inadequate. Iron acquisition from the host is important for the pathogenicity and virulence of many bacterial pathogens. F. columnare iron acquisition has not been studied in detail. We identified genes predicted to function in siderophore production for ferric iron uptake. Genes predicted to encode the proteins needed for siderophore synthesis, export, uptake, and regulation were deleted from F. columnare strain MS-FC-4. The mutants were examined for defects in siderophore production, for growth defects in iron-limited conditions, and for virulence against zebrafish and rainbow trout. Mutants lacking all siderophore activity were obtained. These mutants displayed growth defects when cultured under iron-limited conditions, but they retained virulence against zebrafish and rainbow trout similar to that exhibited by the wild type, indicating that the F. columnare MS-FC-4 siderophores are not required for virulence under the conditions tested. IMPORTANCE Columnaris disease, which is caused by Flavobacterium columnare, is a major problem for freshwater aquaculture. Little is known regarding F. columnare virulence factors, and control measures are limited. Iron acquisition mechanisms such as siderophores are important for virulence of other pathogens. We identified F. columnare siderophore biosynthesis, export, and uptake genes. Deletion of these genes eliminated siderophore production and resulted in growth defects under iron-limited conditions but did not alter virulence in rainbow trout or zebrafish. The results indicate that the F. columnare strain MS-FC-4 siderophores are not critical virulence factors under the conditions tested but may be important for survival under iron-limited conditions in natural aquatic environments or aquaculture systems.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/metabolismo , Hierro/metabolismo , Oncorhynchus mykiss/microbiología , Sideróforos/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Pez Cebra
5.
Appl Environ Microbiol ; 88(3): e0170521, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34818105

RESUMEN

Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here, we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted 10 genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding 10 secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Animales , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium , Proteómica , Virulencia , Pez Cebra
6.
Curr Microbiol ; 78(7): 2474-2480, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991203

RESUMEN

Flavobacterium columnare is a problematic pathogen for the aquaculture industry where isolates are classified by genomovars. Suspended growth in a low nutrient media, like tryptone yeast extract salts, is a common method used for laboratory study. The presence of calcium and magnesium is the factor contributing to growth, virulence, and biofilm formation for F. columnare. Exponential growth occurs within 24 h for F. columnare when grown in complete tryptone yeast extract salts medium at 30 ºC. Withholding CaCl2 and MgSO4 components from a complete TYES formulation reduced or completely inhibited growth of genomovar I isolates but not the growth of genomovar II, IIB, or III isolates. Only 3 of 20 genomovar I isolates, MS-FC-4, FC-CSF-53, and 023-08-3, could achieve O.D. 540 readings ≥ 0.3 but only after 48-h incubation in cation-restricted TYES. Independently adding CaCl2 or MgSO4 to tryptone and yeast extracts did not result in a genomovar-specific growth phenotype, but generally demonstrated increased clumping with individual isolates presenting abnormal growth. Clumping formed filamentous strings that migrated to the top of the culture tube when isolates were grown in TYE+CaCl2. Several of the F. columnare isolates from all the genomovars exhibited delayed growth when a single cation source was provided. This study demonstrates phenotypic differences between and within genomovars of a single bacterial species when grown under different TYES media conditions.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Animales , Cationes , Flavobacterium/genética
7.
J Fish Dis ; 44(5): 533-539, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33647180

RESUMEN

Flavobacterium columnare (Fc) is the causative agent for columnaris disease (CD) in several fish species and an emerging problem for rainbow trout aquaculture. We characterize the virulence phenotype of two Fc isolates, CSF-298-10 and MS-FC-4, against trout from two sources, NCCCWA and a production stock (PS), at the eyed egg and alevin life stages. Immersion challenges demonstrated that NCCCWA eyed eggs were susceptible to the Fc isolate MS-FC-4 (>97% mortality) but no mortality was observed against PS eyed eggs. The CSF-298-10 had little effect on any eyed eggs tested and was not highly virulent to any alevin till day six post-hatch, up to 38% for NCCCWA and ~80% PS alevin. The MS-FC-4 strain produced ≥80% mortality any day an immersion challenge occurred post-hatch. Significant difference in CFU counts was recorded between the Fc strains on 2 days post-hatch immersion challenges. Counts for the NCCCWA alevin were 4.4 × 103  CFU/ml-1 and 1.8 × 106  CFU/ml-1 for the CSF-298-10 strain and MS-FC-4 strain, respectively, and for the PS alevin CSF-298-10 measured 9.9 × 101  CFU/ml-1 and 3.8 × 105  CFU/ml-1 for MS-FC-4. These two Fc isolates present stark differences in virulence phenotypes to both eyed eggs and alevin and present an interesting model system for virulence kinetics and potentially alternative pathogenic pathways.


Asunto(s)
Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/patogenicidad , Oncorhynchus mykiss , Animales , Animales Recién Nacidos , Infecciones por Flavobacteriaceae/microbiología , Larva , Oncorhynchus mykiss/crecimiento & desarrollo , Óvulo , Virulencia
8.
Dis Aquat Organ ; 139: 213-221, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32495747

RESUMEN

Flavobacterium columnare immersion challenges are affected by water-related environmental parameters and thus are difficult to reproduce. Whereas these challenges are typically conducted using flow-through systems, use of a recirculating challenge system to control environmental parameters may improve reproducibility. We compared mortality, bacterial concentration, and environmental parameters between flow-through and recirculating immersion challenge systems under laboratory conditions using 20 rainbow trout families. Despite identical dose concentration (1:75 dilution), duration of challenge, lot of fish, and temperature, average mortality in the recirculating system (42%) was lower (p < 0.01) compared to the flow-through system (77%), and there was low correlation (r = 0.24) of family mortality. Mean days to death (3.25 vs. 2.99 d) and aquaria-to-aquaria variation (9.6 vs. 10.4%) in the recirculating and flow-through systems, respectively, did not differ (p ≥ 0.30). Despite 10-fold lower water replacement rate in the recirculating (0.4 exchanges h-1) compared to flow-through system (4 exchanges h-1), differences in bacterial concentration between the 2 systems were modest (≤0.6 orders of magnitude) and inconsistent throughout the 21 d challenge. Compared to the flow-through system, dissolved oxygen during the 1 h exposure and pH were greater (p ≤ 0.02), and calcium and hardness were lower (p ≤ 0.03), in the recirculating system. Although this study was not designed to test effects of specific environmental parameters on mortality, it demonstrates that the cumulative effects of these parameters result in poor reproducibility. A recirculating immersion challenge model may be warranted to empirically identify and control environmental parameters affecting mortality and thus may serve as a more repeatable laboratory challenge model.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Flavobacterium , Reproducibilidad de los Resultados
9.
Database (Oxford) ; 20182018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239679

RESUMEN

The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices.


Asunto(s)
Agricultura , Bases de Datos Genéticas , Genómica , Cruzamiento , Ontología de Genes , Metadatos , Encuestas y Cuestionarios
10.
Genome Res ; 14(4): 733-41, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15060017

RESUMEN

The rat is an important animal model for human diseases and is widely used in physiology. In this article we present a new strategy for gene discovery based on the production of ESTs from serially subtracted and normalized cDNA libraries, and we describe its application for the development of a comprehensive nonredundant collection of rat ESTs. Our new strategy appears to yield substantially more EST clusters per ESTs sequenced than do previous approaches that did not use serial subtraction. However, multiple rounds of library subtraction resulted in high frequencies of otherwise rare internally primed cDNAs, defining the limits of this powerful approach. To date, we have generated >200,000 3' ESTs from >100 cDNA libraries representing a wide range of tissues and developmental stages of the laboratory rat. Most importantly, we have contributed to approximately 50,000 rat UniGene clusters. We have identified, arrayed, and derived 5' ESTs from >30,000 unique rat cDNA clones. Complete information, including radiation hybrid mapping data, is also maintained locally at http://genome.uiowa.edu/clcg.html. All of the sequences described in this article have been submitted to the dbEST division of the NCBI.


Asunto(s)
Genes/genética , Animales , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Femenino , Biblioteca de Genes , Humanos , Masculino , Ratones , Poliadenilación/genética , Procesamiento Postranscripcional del ARN/genética , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos
11.
Bioinformatics ; 19(11): 1318-24, 2003 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-12874042

RESUMEN

MOTIVATION: High accuracy of data always governs the large-scale gene discovery projects. The data should not only be trustworthy but should be correctly annotated for various features it contains. Sequence errors are inherent in single-pass sequences such as ESTs obtained from automated sequencing. These errors further complicate the automated identification of EST-related sequencing. A tool is required to prepare the data prior to advanced annotation processing and submission to public databases. RESULTS: This paper describes ESTprep, a program designed to preprocess expressed sequence tag (EST) sequences. It identifies the location of features present in ESTs and allows the sequence to pass only if it meets various quality criteria. Use of ESTprep has resulted in substantial improvement in accurate EST feature identification and fidelity of results submitted to GenBank. AVAILABILITY: The program is freely available for download from http://genome.uiowa.edu/pubsoft/software.html


Asunto(s)
Algoritmos , ADN Complementario/química , ADN Complementario/genética , Perfilación de la Expresión Génica/métodos , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuencia de Bases , Etiquetas de Secuencia Expresada , Datos de Secuencia Molecular , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...